✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在“互联网 + 餐饮” 模式的迅猛发展下,外卖行业规模持续扩大,骑手配送路径规划成为影响服务质量与运营成本的关键环节。带时间窗的外卖配送路径规划问题(VRPTW)要求在满足客户时间窗限制、车辆载量约束的前提下,规划出成本最优的配送路径,传统算法在处理此类复杂问题时存在求解效率低、易陷入局部最优等不足。本文提出基于多策略改进的蜣螂算法(MBDBO)来求解该问题,通过引入多种优化策略,提升算法性能,以实现包含服务客户数量、服务时间、载量、路径长度等因素的最优路径成本目标 。
一、带时间窗外卖配送路径规划问题分析
1.1 问题描述
带时间窗的外卖配送路径规划问题可描述为:在给定的配送区域内,有一个配送中心和若干个客户点,每个客户点都有特定的时间窗,表示客户期望的配送时间范围,若骑手在时间窗外到达,会产生惩罚成本;同时,每个客户点的订单有一定的需求量,骑手所使用的配送车辆有载量限制;目标是为骑手规划从配送中心出发,遍历各个客户点后返回配送中心的最优路径,使得综合考虑服务客户数量、服务时间、载量、路径长度等因素的总成本最小 。
1.2 传统算法的局限性
传统的求解方法,如遗传算法、粒子群算法等,在处理 VRPTW 问题时,由于问题本身的 NP - hard 特性以及算法自身的缺陷,存在诸多不足。这些算法在搜索过程中容易陷入局部最优解,尤其是在面对大规模配送网络时,难以快速找到全局最优路径;同时,算法的收敛速度较慢,计算效率无法满足外卖配送实时性的要求 。
二、蜣螂算法(DBO)与多策略改进思路
2.1 蜣螂算法原理
蜣螂算法(Dung Beetle Optimization,DBO)是一种新兴的元启发式优化算法,其灵感来源于蜣螂滚动粪球、挖掘巢穴等行为。算法中,每个蜣螂个体代表一个潜在的解,通过模拟蜣螂在寻找食物和建造巢穴过程中的移动、合作、竞争等行为,在解空间中进行搜索和优化 。
2.2 多策略改进方法
- 动态惯性权重策略
:在算法迭代初期,设置较大的惯性权重,使算法具有较强的全局搜索能力,能够快速探索解空间;随着迭代的进行,惯性权重逐渐减小,增强算法的局部开发能力,使算法更易收敛到全局最优解 。
- 精英反向学习策略
:引入精英反向学习机制,在每次迭代后,对当前种群中的精英个体进行反向学习操作,生成反向解。通过比较精英个体与反向解的适应度,选择更优的解保留在种群中,扩大搜索范围,提高算法跳出局部最优的能力 。
- 自适应邻域搜索策略
:根据算法的收敛情况,自适应调整邻域搜索范围。当算法收敛速度较慢时,增大邻域搜索范围,加快搜索速度;当算法接近最优解时,缩小邻域搜索范围,提高局部搜索精度 。
三、基于 MBDBO 的配送路径规划模型建立
3.1 模型假设
-
配送中心和客户点的位置坐标已知且固定;
-
骑手在各路段的行驶速度恒定;
-
每个客户点的订单需求量和时间窗已知;
-
配送车辆的载量固定,且每次配送任务开始时车辆满载出发 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇