【可再生能源场景生成】生成对抗性网络的数据驱动场景生成方法研究(该方法基于两个互连的深度神经网络与基于概率模型的现有方法相比)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球对清洁能源需求的不断增长,可再生能源(如太阳能、风能等)在能源结构中的占比日益提高。然而,可再生能源具有间歇性、波动性和不确定性等特点,这给电力系统的规划、运行和调度带来了巨大挑战。为了更好地应对这些挑战,准确生成可再生能源场景至关重要。传统基于概率模型的场景生成方法在处理复杂、高维的可再生能源数据时存在一定局限性,而生成对抗性网络(Generative Adversarial Networks,GAN)作为一种新兴的数据驱动方法,基于两个互连的深度神经网络,为可再生能源场景生成提供了新的思路和解决方案。本研究旨在深入探讨基于 GAN 的数据驱动场景生成方法,并对比分析其与基于概率模型的现有方法的差异与优势。

二、可再生能源场景生成需求与传统方法

2.1 可再生能源场景生成的必要性

可再生能源的间歇性和波动性使得其发电功率难以准确预测。例如,太阳能发电受天气、昼夜等因素影响,风能发电受风速、风向变化制约。在电力系统规划中,需要考虑不同场景下可再生能源的出力情况,以合理安排发电设备容量、电网建设等;在运行和调度方面,准确的场景生成有助于制定最优的发电计划、储能配置策略,保障电力系统的稳定可靠运行和电力供需平衡。因此,高效、准确的可再生能源场景生成方法是实现可再生能源大规模接入和高效利用的关键环节。

2.2 基于概率模型的现有方法概述

传统基于概率模型的可再生能源场景生成方法主要包括蒙特卡洛模拟、场景树法等。蒙特卡洛模拟通过对可再生能源的随机变量(如风速、太阳辐照度)进行大量随机抽样,生成多个可能的场景,其优点是原理简单、适用性广,但计算量较大,生成的场景可能存在冗余。场景树法以树形结构组织场景,通过分层抽样和场景削减技术,减少场景数量的同时保留关键信息,能够有效降低计算复杂度,但在处理复杂的相关性和非线性关系时存在一定困难,且场景树的构建需要一定的经验和假设,可能影响场景生成的准确性。这些方法大多依赖于对可再生能源随机变量的概率分布假设,在实际应用中,由于可再生能源数据的复杂性和不确定性,这些假设往往难以准确满足,导致生成的场景与实际情况存在偏差。

三、基于生成对抗性网络的数据驱动场景生成方法

3.1 GAN 架构与原理

生成对抗性网络由生成器(Generator,G)和判别器(Discriminator,D)两个互连的深度神经网络组成。生成器的作用是根据输入的噪声向量生成数据样本,试图模拟真实数据的分布;判别器则负责判断输入的数据是来自真实数据集还是生成器生成的虚假数据。在训练过程中,生成器和判别器进行对抗训练:生成器不断优化自身参数,以使生成的数据更接近真实数据,从而欺骗判别器;判别器则努力提高判别能力,准确区分真实数据和生成数据。两者相互博弈,最终达到一个纳什均衡状态,此时生成器能够生成高质量、符合真实数据分布的样本。对于可再生能源场景生成,生成器输入噪声向量,输出模拟的可再生能源场景(如不同时刻的太阳能发电功率、风速等数据序列),判别器则对生成的场景和真实的可再生能源场景数据进行判别,通过不断调整两个网络的参数,使生成的场景更加逼真。

3.2 可再生能源场景生成中的应用实现

在实际应用中,首先需要收集大量的历史可再生能源数据(如多年的太阳辐照度、风速、风向等数据)以及相关的气象数据、地理数据等作为训练数据集。对数据进行预处理,包括数据清洗、归一化等操作,以提高数据质量和模型训练效果。然后,设计合适的生成器和判别器网络结构。生成器可以采用多层感知机(MLP)、循环神经网络(RNN)或其变体(如长短期记忆网络 LSTM、门控循环单元 GRU)等,根据可再生能源数据的时间序列特性,有效捕捉数据的时间相关性;判别器同样可以采用类似的网络结构,用于判断输入数据的真实性。在训练过程中,选择合适的损失函数(如交叉熵损失函数),通过反向传播算法更新生成器和判别器的参数。经过多次迭代训练,生成器能够生成多样化、符合实际分布的可再生能源场景,为电力系统的相关决策提供丰富的场景数据支持。

四、对比分析:GAN 方法与基于概率模型的方法

4.1 生成场景的准确性与多样性

基于概率模型的方法依赖于预先设定的概率分布假设,当实际数据的分布与假设存在差异时,生成的场景准确性会受到影响。而 GAN 方法通过对大量真实数据的学习,能够自动捕捉数据的内在分布规律,生成更接近真实情况的可再生能源场景。在多样性方面,概率模型生成的场景通常基于固定的抽样规则,场景之间的差异相对有限;GAN 则可以通过调整输入的噪声向量,生成丰富多样的场景,更好地覆盖可再生能源可能出现的各种情况。例如,在模拟不同天气条件下的太阳能发电场景时,GAN 能够生成更真实的多云、阴天等复杂天气下的发电功率变化曲线,而概率模型可能难以准确模拟这些复杂情况。

4.2 计算效率与模型适应性

在计算效率上,蒙特卡洛模拟等概率模型方法需要进行大量的随机抽样,计算量较大,尤其是在生成高维、复杂场景时,计算时间长、资源消耗大;场景树法虽然通过场景削减技术降低了计算量,但场景树的构建和优化过程也需要一定的计算资源。相比之下,GAN 在训练完成后,生成新场景的速度较快,能够快速为电力系统决策提供场景数据。在模型适应性方面,概率模型一旦设定好概率分布和参数,对数据分布的变化适应性较差;而 GAN 可以通过不断更新训练数据,持续优化网络参数,适应可再生能源数据随时间、地域等因素的变化,具有更强的适应性和泛化能力。

4.3 局限性与挑战

尽管 GAN 在可再生能源场景生成中具有诸多优势,但也存在一些局限性。一方面,GAN 的训练过程不稳定,容易出现模式崩溃(Mode Collapse)问题,即生成器只能生成少数几种类型的场景,无法充分捕捉真实数据的多样性。另一方面,GAN 需要大量的高质量数据进行训练,而在实际中,某些地区或某些类型的可再生能源数据可能存在数据缺失、噪声大等问题,影响模型的训练效果。此外,与概率模型相比,GAN 的结果缺乏明确的概率解释,难以直接用于基于概率的风险评估等应用。基于概率模型的方法虽然存在一些不足,但在理论上具有明确的概率基础,在一些对概率解释要求较高的场景中仍具有一定的应用价值。

五、结论与展望

5.1 研究成果总结

本研究深入探讨了基于生成对抗性网络的数据驱动可再生能源场景生成方法,并与基于概率模型的现有方法进行了全面对比分析。实验和案例表明,GAN 方法在生成场景的准确性和多样性方面具有显著优势,能够更好地满足电力系统对可再生能源场景生成的需求。尽管 GAN 存在训练不稳定、缺乏概率解释等局限性,但在可再生能源场景生成领域展现出了巨大的应用潜力。

5.2 未来研究方向

未来的研究可以从以下几个方向展开。一是进一步改进 GAN 的架构和训练算法,解决模式崩溃等问题,提高训练的稳定性和收敛速度。例如,探索结合其他生成模型(如变分自编码器 VAE)的优势,改进 GAN 的生成能力;研究新的对抗训练策略,如引入强化学习等方法,优化生成器和判别器的训练过程。二是研究如何将 GAN 生成的场景与概率模型相结合,赋予生成结果明确的概率解释,使其更好地应用于电力系统的风险评估、可靠性分析等领域。三是针对数据缺失、噪声大等问题,开发有效的数据预处理和增强技术,提高 GAN 在实际复杂数据环境下的适应性和生成效果。此外,拓展 GAN 在其他可再生能源场景(如生物质能、水能等)生成中的应用,推动可再生能源领域的智能化发展。

⛳️ 运行结果

图片

🔗 参考文献

[1] 王华.量子密钥分发网络生存性关键技术研究[D].北京邮电大学,2021.

[2] 胡革清,孟育伟,陆小波,等.基于TCP/IP与X.25协议的网络通信控制原理及实现[J].通信对抗, 2004(2):7.DOI:CNKI:SUN:TXDK.0.2004-02-011.

[3] 胡芳.主动式抗干扰接收机中多用户检测方法的研究[D].安徽大学[2025-07-03].DOI:10.7666/d.d158811.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值