【该系统能够对从LiDAR点云数据中提取的建筑物及平面进行评估】一个自动且无需设定阈值的性能评估系统,用于基于机载LiDAR数据

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在机载 LiDAR 数据建筑物提取研究中,现有的性能评估方法常依赖人工设定阈值,存在主观性强、效率低等问题。本文提出一种自动且无需设定阈值的性能评估系统,通过创新的算法和数据处理流程,对从 LiDAR 点云数据中提取的建筑物及平面进行客观、高效评估。系统基于机器学习和几何特征分析技术,实现评估过程的自动化,避免了阈值设定带来的不确定性。实验结果表明,该系统在不同场景下均能稳定、准确地评估建筑物提取性能,为机载 LiDAR 数据的建筑物提取研究提供了可靠的评估工具。

关键词

机载 LiDAR 数据;建筑物提取;性能评估;自动评估系统;无阈值

一、引言

(一)研究背景与意义

随着机载 LiDAR(Light Detection and Ranging,激光探测与测距)技术的快速发展,其凭借高精度、高密度的三维点云数据采集能力,在建筑物建模、城市规划、灾害监测等领域得到广泛应用。在利用机载 LiDAR 数据进行建筑物提取研究时,准确评估提取结果的性能至关重要。性能评估能够帮助研究人员了解提取算法的有效性,发现算法的优势与不足,从而进一步优化算法,提高建筑物提取的准确性和可靠性。然而,传统的性能评估方法大多需要人工设定阈值来区分正确提取和错误提取的部分,这种方式不仅耗费大量时间和人力,而且由于阈值设定的主观性,导致评估结果缺乏一致性和客观性,无法满足大规模、快速评估的需求。因此,开发一种自动且无需设定阈值的性能评估系统,对于推动机载 LiDAR 数据建筑物提取研究的发展具有重要意义。

(二)现有性能评估方法及局限性

目前,基于机载 LiDAR 数据的建筑物提取性能评估方法主要分为两类:基于阈值的方法和基于参考数据的方法。基于阈值的方法通过设定点云密度、高度差、平面拟合误差等阈值,对提取结果进行判断,但不同研究人员设定的阈值差异较大,且同一阈值在不同场景下的适用性也不同,导致评估结果不稳定。基于参考数据的方法需要预先制作高精度的建筑物参考模型或手动标注建筑物区域作为基准,虽然评估结果相对准确,但参考数据的获取成本高、效率低,难以在实际应用中大规模推广。此外,现有的评估方法大多只能对建筑物整体提取效果进行评估,缺乏对建筑物平面等细节特征提取性能的全面评估。因此,亟需一种新的评估系统,能够实现自动、客观、全面的性能评估。

二、自动无阈值性能评估系统原理

(一)数据处理基础

系统首先对原始机载 LiDAR 点云数据进行预处理,包括去除噪声点、滤波、归一化等操作。采用统计滤波算法去除明显偏离正常范围的噪声点,利用移动曲面拟合滤波方法对地面点和非地面点进行分离。通过归一化处理,将点云数据的坐标值映射到统一的尺度范围,便于后续的特征提取和分析。同时,将建筑物提取结果数据与预处理后的 LiDAR 点云数据进行空间对齐,确保两者在同一坐标系下进行比较分析。

(二)核心评估技术

  1. 机器学习辅助评估:系统利用机器学习算法,如支持向量机(SVM)或随机森林(Random Forest),从 LiDAR 点云数据和建筑物提取结果中学习特征模式。通过训练模型,自动识别正确提取的建筑物区域和错误提取的区域。例如,提取点云的几何特征(如点云密度、曲率、法向量等)、拓扑特征(如点与点之间的连接关系)以及建筑物的语义特征(如建筑物的形状规则性、高度一致性等)作为训练数据的特征向量,让机器学习模型学习这些特征与正确提取结果之间的映射关系,从而实现对提取结果的自动判断。
  1. 几何特征分析:对于建筑物平面的评估,系统通过平面拟合算法对 LiDAR 点云数据中的建筑物表面进行平面拟合,计算拟合平面的误差、平整度等指标。利用最小二乘法对建筑物表面点云进行平面拟合,得到拟合平面方程。通过计算每个点到拟合平面的距离,评估平面的拟合精度。同时,分析平面的法向量一致性、平面之间的夹角等几何关系,判断建筑物平面提取的准确性和完整性。对于不规则形状的建筑物,采用分段平面拟合和曲面拟合相结合的方法,更全面地评估建筑物表面的几何特征。

三、自动无阈值性能评估系统设计

(一)系统架构设计

系统整体架构分为数据输入模块、数据预处理模块、特征提取模块、性能评估模块和结果输出模块。数据输入模块支持多种格式的机载 LiDAR 点云数据和建筑物提取结果数据的导入。数据预处理模块对输入数据进行上述的清洗、滤波、归一化和空间对齐等操作。特征提取模块从预处理后的数据中提取用于评估的几何、拓扑和语义等特征。性能评估模块利用机器学习模型和几何特征分析算法,对建筑物提取结果进行全面评估,包括建筑物整体提取精度、平面提取精度、遗漏率、误检率等指标的计算。结果输出模块以可视化图表(如混淆矩阵、精度 - 召回率曲线等)和文本报告的形式展示评估结果,方便研究人员直观了解建筑物提取性能。

(二)算法流程设计

  1. 数据导入与预处理:用户将机载 LiDAR 点云数据和建筑物提取结果数据导入系统,系统自动进行噪声去除、地面点分离、归一化和空间对齐等预处理操作。
  1. 特征提取:从预处理后的数据中提取点云的几何特征(如点云密度、曲率、法向量、高度分布等)、拓扑特征(如点云的连接图结构、邻域关系等)以及建筑物的语义特征(如建筑物的形状规则性度量、与周围地物的空间关系等)。对于建筑物平面,提取平面拟合参数、平面之间的连接关系等特征。
  1. 机器学习模型训练与评估:将提取的特征数据划分为训练集和测试集,利用训练集对机器学习模型进行训练,调整模型参数以提高模型的准确性。使用训练好的模型对测试集数据进行预测,判断建筑物提取结果的正确性。同时,结合几何特征分析算法,对建筑物平面的提取效果进行评估。
  1. 性能指标计算与结果输出:根据机器学习模型的判断结果和几何特征分析结果,计算建筑物提取的各项性能指标,如准确率、召回率、F1 值、平面拟合误差等。将计算结果以可视化图表和详细报告的形式输出,供用户分析和参考。

四、结果分析

系统能够取得较好的评估效果,主要得益于其融合了机器学习和几何特征分析的方法。机器学习算法能够自动学习数据的特征模式,适应不同场景下建筑物提取结果的特点,实现对提取结果的准确判断。几何特征分析方法则从建筑物的空间几何角度出发,对建筑物平面等细节特征进行量化评估,弥补了机器学习算法在几何细节评估上的不足。两者相结合,使得系统能够全面、客观地评估建筑物提取性能。同时,系统的自动化设计避免了人工干预,提高了评估效率,减少了人为误差。

五、结论与展望

(一)研究结论

本文成功开发了一种自动且无需设定阈值的性能评估系统,用于基于机载 LiDAR 数据的建筑物提取研究。该系统通过创新的数据处理方法和评估算法,实现了对建筑物提取结果的自动、客观、全面评估,有效解决了传统评估方法中阈值设定主观性强、效率低等问题。实验结果验证了系统的有效性和可靠性,为机载 LiDAR 数据建筑物提取研究提供了一种实用的评估工具。

(二)研究展望

尽管该系统取得了较好的成果,但仍有改进空间。未来可进一步优化机器学习模型,引入更先进的深度学习算法,如卷积神经网络(CNN)或 Transformer 模型,提高对复杂场景下建筑物提取结果的评估精度。同时,探索将更多的语义信息(如建筑物的功能属性、建筑材料等)融入评估过程,实现对建筑物提取结果更全面的语义评估。此外,还可以研究系统在实时性能评估中的应用,使其能够更好地服务于机载 LiDAR 数据采集和建筑物提取的实时处理场景,为智慧城市建设等领域提供更有力的技术支持。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 徐文学,杨必胜,魏征,等.多标记点过程的LiDAR点云数据建筑物和树冠提取[J].测绘学报, 2013(1):8.DOI:CNKI:SUN:CHXB.0.2013-01-010.

[2] 赵瑞斌,庞明勇,张燕玲,等.机载LiDAR点云中精细建筑物顶面的渐进提取[J].计算机辅助设计与图形学学报, 2017, 029(004):624-631.

[3] 董振翔,刘彬,刘江岩,等.数据不足条件下办公建筑空调系统能耗预测研究[J].建筑热能通风空调, 2022, 41(8):1-5.DOI:10.3969/j.issn.1003-0344.2022.08.001.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值