作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究针对风电功率预测中时间序列特征提取不充分、模型对关键信息捕捉能力不足等问题,提出基于时序卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制(Attention)相结合的风电功率预测模型。TCN 通过因果卷积与膨胀卷积挖掘数据长距离依赖关系,BiGRU 双向处理时间序列信息,Attention 机制聚焦关键特征,三者协同提升模型预测精度与适应性。实验结果表明,该模型在多场景下优于传统预测模型,为风电功率精准预测提供了新途径。
一、引言
1.1 研究背景
随着全球对清洁能源需求的不断增长,风力发电作为重要的可再生能源发电方式,其装机容量持续攀升。然而,风能的随机性、间歇性和波动性导致风电功率难以精准预测,这给电力系统的稳定运行、调度计划制定以及电力市场交易带来了巨大挑战。准确的风电功率预测有助于提高风电并网消纳能力、降低系统运行成本、保障电力供应可靠性,因此,研究高效、精准的风电功率预测方法具有重要的现实意义。
1.2 研究现状
目前,风电功率预测方法主要包括物理方法、统计方法和人工智能方法。物理方法基于空气动力学和热力学原理构建模型,但对气象数据要求高且计算复杂;统计方法如 ARIMA 等在处理非线性、非平稳的风电数据时效果不佳;人工智能方法中,深度学习模型如 LSTM、GRU 等虽有应用,但存在特征提取效率低、对复杂时间序列信息挖掘不充分等问题。部分研究尝试模型融合,但在时间序列特征处理和关键信息捕捉方面仍有改进空间,亟需更有效的预测模型。
1.3 研究意义
本研究提出的基于 TCN-BiGRU-Attention 的风电功率预测模型,旨在解决现有方法的不足,提高风电功率预测的准确性和可靠性,为电力系统的优化调度、能源规划以及风电产业的健康发展提供有力的数据支持。
二、相关理论与方法
2.1 时序卷积网络(TCN)
TCN 是一种专门用于处理时间序列数据的卷积神经网络,通过因果卷积保证输出仅依赖于过去和当前的输入,避免未来信息泄露;膨胀卷积则通过设置不同的膨胀因子,以指数级扩大卷积核的感受野,能够有效捕捉时间序列数据中的长距离依赖关系 。在风电功率预测中,TCN 可对多变量时间序列数据进行高效的特征提取,挖掘数据间的潜在规律。
2.2 双向门控循环单元(BiGRU)
BiGRU 由两个方向相反的 GRU 组成,能够同时从正向和反向对时间序列数据进行处理,从而更全面地捕捉数据的上下文信息,有效解决单向循环神经网络只能利用过去信息的局限。在风电功率预测中,BiGRU 可以充分利用风电功率数据在时间维度上的前后关联,更好地学习数据的动态变化趋势。
2.3 注意力机制(Attention)
注意力机制模拟人类视觉注意力,能够使模型聚焦于输入数据中的关键信息,忽略无关信息。在风电功率预测中,不同的影响因素(如风速、风向、温度等)在不同时刻对风电功率的影响程度不同,通过注意力机制可以自适应地分配各因素和时间步的权重,增强模型对关键特征的捕捉能力,提高预测精度。
三、基于 TCN-BiGRU-Attention 的风电功率预测模型构建
3.1 数据预处理
收集与风电功率相关的多变量历史数据,包括风速、风向、空气密度、温度、湿度以及风电功率自身的历史数据等。对数据进行缺失值插补(采用线性插值或基于机器学习的方法)、异常值处理(如 3σ 原则剔除异常点),并将数据归一化到 [0, 1] 区间,以提高数据质量和模型训练的稳定性。将处理后的数据按一定比例划分为训练集、验证集和测试集,通常采用 7:1:2 的划分方式。
3.2 模型结构设计
模型整体结构由数据输入层、TCN 特征提取层、BiGRU 时间序列分析层、Attention 机制层和输出层组成。数据输入层接收经过预处理的多变量时间序列数据;TCN 特征提取层通过多层因果卷积和膨胀卷积操作,提取数据的长距离依赖特征;BiGRU 时间序列分析层对 TCN 提取的特征进行双向处理,进一步挖掘数据在时间维度上的前后关联信息;Attention 机制层根据 BiGRU 的输出,计算各时间步和变量的注意力权重,突出关键特征;最后,输出层通过全连接层将处理后的特征映射为风电功率预测值。
3.3 模型训练与优化
采用均方误差(MSE)作为损失函数,结合 Adam 优化器对模型进行训练,调整模型参数以最小化验证集损失。在训练过程中,为防止模型过拟合,采用 Dropout 技术随机丢弃部分神经元,同时引入 L2 正则化约束参数大小,提高模型的泛化能力。
四、 结果分析
基于 TCN-BiGRU-Attention 的模型性能更优,主要原因在于:TCN 通过因果卷积和膨胀卷积有效提取了风电数据的长距离依赖特征;BiGRU 双向处理时间序列信息,全面捕捉了数据的上下文关联;Attention 机制则聚焦于关键特征,增强了模型对重要信息的敏感度。三者相互协作,使模型能够更好地处理风电功率数据的复杂性,从而显著提高预测精度。
五、创新点
5.1 模型融合创新
首次将时序卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制(Attention)三者深度融合,应用于风电功率预测领域。突破了传统单一模型或简单组合模型的局限,形成了 “特征提取 - 时间序列分析 - 关键信息聚焦” 的完整预测架构,为风电功率预测提供了全新的模型设计思路。
5.2 时间序列特征提取创新
结合 TCN 的因果卷积与膨胀卷积以及 BiGRU 的双向处理结构,构建了一种高效的时间序列特征提取机制。TCN 的膨胀卷积以指数级扩大感受野,能够捕捉到风电数据中长距离的依赖关系;BiGRU 双向处理则从正反两个方向挖掘数据的上下文信息,二者协同作用,相比传统方法能更全面、深入地提取风电功率数据的时间序列特征。
5.3 关键信息捕捉创新
引入注意力机制对风电数据的关键特征进行自适应加权。在多变量输入的风电功率预测场景中,不同因素在不同时刻对风电功率的影响程度存在差异,通过注意力机制能够动态地分配各因素和时间步的权重,使模型聚焦于真正影响风电功率变化的关键信息,有效提升了模型对复杂数据的处理能力和预测准确性 。
六、结论与展望
6.1 研究结论
本研究提出的基于 TCN-BiGRU-Attention 的风电功率预测模型,在处理多变量风电数据的短期、中期和长期预测任务中,展现出优于传统预测模型的性能。通过创新的模型融合、时间序列特征提取和关键信息捕捉机制,有效提高了预测精度和模型适应性,为风电功率预测提供了一种可靠的新方法。
6.2 研究展望
未来研究可从以下方向拓展:一是进一步优化 TCN-BiGRU-Attention 模型结构,探索更适合风电数据特点的网络参数和层间连接方式;二是融合更多与风电功率相关的数据源,如气象卫星云图、地形地貌数据等,丰富模型的输入信息;三是开展模型在不同风电场、不同气候条件下的应用研究,验证其通用性和适应性,并进行针对性改进;四是研究模型的实时更新机制,结合边缘计算等技术,实现风电功率的实时精准预测。
⛳️ 运行结果
🔗 参考文献
[1] 白隆,俞斌,高峰,等.基于ICEEMDAN和TCN-AM-BiGRU的短期光伏功率预测[J].电子测量技术, 2024, 47(9):61-69.
[2] 韦凯,李青,姚益,等.基于DA-TCN-BiGRU的坡面泥石流预测研究[J].现代电子技术, 2024(006):047.DOI:10.16652/j.issn.1004-373x.2024.06.001.
[3] 向先迪,李云煜,金刊,等.基于产业链传导机制的锡金属价格组合预测研究[J].中国矿业, 2025, 34(2):244-255.DOI:10.12075/j.issn.1004-4051.20250167.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇