【边缘存储-云端计算】

本文探讨了边缘存储的概念,强调其在低延迟、网络带宽优化、数据安全和隐私保护方面的优势,尤其是在物联网、自动驾驶和分布式网络中的应用。同时,文章指出中心存储的局限以及边缘存储技术如何通过芯片技术和去中心化存储解决这些问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、边缘存储定义

边缘存储就是把数据直接存储在数据采集点或者靠近的边缘计算节点中,例如MEC服务器或CDN服务器,而不需要将数据通过网络即时传输到中心服务器(或云存储)的数据存储方式。边缘存储一般采用分布式存储,也称为去中心化存储。下面通过几个案例来说明:

1、在安防监控领域,智能摄像头或网络视频录像机(NVR)直接保存数据,即时处理,不需要将所有数据传输至中心机房再处理。
2、家庭网络存储服务器,用户更偏向将私人数据存储在自己家中,而不是通过网络上传到提供存储服务的第三方公司,这样第三方公司不会接触到敏感数据,保证隐私保护和安全性。
3、自动驾驶采集的数据往往可以在车载单元或路侧单元中进行预处理,再将处理后的少量数据传输给后台服务中心或云。

在这里插入图片描述

为什么目前主要使用的还是中心存储,而不是边缘存储呢?一个很重要的原因是数据处理在中心,边缘设备的处理能力还不够。另外一个原因是缺乏成熟可行的技术方案连接和同步边缘节点,无法使得边缘端更多地承担数据采集、处理和存储的任务。

随着芯片技术的发展,边缘端设备的运算能力和处理速度都得到大幅度提升,使得设备成本大大降低,在靠近数据的边缘端已经可以进行较好的数据处理。同时,随着去中心化存储技术的飞速发展,例如IPFS 采用的Libp2p,能够很好地解决端设备的局部互联问题,可以在边缘进行连接和处理。以车联网为例,在自动驾驶车辆中传感器和摄像头采集的数据完全可以存放在本地和路侧单元中,由于在同一个街道或区域运行的汽车很多,它们会采集大量重复的数据,但也有一些数据可以相互补充。当把数据存储在本地时,同一个街道上的汽车能够相互连接,并对数据进行即时聚合,这样需要上传的数据就大大减少了。

边缘存储的主要特点包括:

  • 低时延。通常小于5ms。 分布式查看,隔离操作。
  • 同一个网络操作
### ARIMA模型在边缘计算云端协同监控中的应用 #### 边缘计算云端协作概述 边缘计算是一种分布式计算架构,其中数据处理发生在靠近数据源的位置,从而减少延迟并提高效率。而云计算则提供强大的存储和计算能力来支持复杂的分析任务。两者的结合可以实现高效的数据管理和实时决策。 #### ARIMA模型简介 自回归积分滑动平均(ARIMA)模型是一类用于时间序列预测的强大统计方法。它通过捕捉过去观察值的趋势、季节性和随机波动来进行未来值的估计[^1]。该模型由三个主要部分组成:p表示自回归项数;d代表差分阶数以达到平稳性;q指代移动平均项的数量。 #### 实现方式 当应用于边缘云协同环境下的监测场景时, 可采用如下策略: 1. **预处理阶段**: 数据采集设备位于网络边界处,在此完成初步过滤与清洗工作之后再上传至更高级别的节点进一步加工利用。这一步骤有助于减轻后续环节的工作负担以及降低传输成本。 2. **本地建模与异常检测**: 利用部署于终端上的轻量化版本算法执行短期趋势判断或者即时告警功能。例如,可以在物联网传感器上运行简化版ARIMA模型快速响应突发状况[^2]。 3. **全局优化调整**: 将来自多个地点的历史记录汇总到中心服务器统一训练更加精确全面的大规模预测体系结构。借助高性能计算机资源探索最佳参数组合,并定期更新下发给前端装置同步改进其表现水平。 4. **动态切换机制设计**: 鉴于不同业务需求可能存在差异化的精度与时效要求,因此有必要建立灵活可变的任务分配原则。即对于那些对时效敏感度较高的请求优先交予临近端口负责处置; 而针对长期战略规划方面的问题,则更多依赖远程数据中心深入剖析挖掘潜在规律特征。 #### 最佳实践建议 为了充分发挥这种混合模式的优势特性需要注意以下几个要点: - 明确划分职责范围,合理配置软硬件设施确保整体性能均衡稳定发挥各自特长领域内的最大效能; - 加强安全防护措施防止机密信息泄露风险同时保障通信链路畅通无阻塞现象发生; - 不断积累经验教训总结提炼形成标准化流程便于推广复制扩大受益群体覆盖面; - 积极拥抱新技术成果适时引入机器学习等先进理念持续提升智能化程度满足日益增长复杂多样的实际应用场景诉求。 ```python import pandas as pd from statsmodels.tsa.arima.model import ARIMA def fit_arima_model(data_series): model = ARIMA(data_series, order=(5,1,0)) results = model.fit() return results data = pd.read_csv('sensor_data.csv') model_results = fit_arima_model(data['value']) forecast_values = model_results.forecast(steps=10) print(forecast_values) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贺公子之数据科学与艺术

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值