ECCV 2022 旷视入选论文亮点解读(上)

本文介绍了旷视在ECCV 2022的20篇入选论文,涉及自监督学习与量化协同、实时中间流估计视频插帧、基于知识蒸馏的多视图立体重建等前沿技术。论文展示了在目标检测、3D重建、图像复原等领域的创新成果,如SSQL、RIFE、KD-MVS等,部分已开源并应用于实际场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

97d6ae3d02da018f29aecc45b7cba360.gif

近日,欧洲计算机视觉国际会议 ECCV 2022(European Conference on Computer Vision)发布了论文录用结果。本届 ECCV 2022论文有效投稿数5803篇,其中1650篇论文中选,录取率仅为28%。

ECCV是国际顶尖的计算机视觉会议之一,每两年举行一次。今年将在10月23日-27日于以色列特拉维夫(Tel-Aviv)举行,并采取线下和线上混合形式召开。

今年,旷视共有20篇论文入选,其中3篇 oral,内容涵盖目标检测、3D重建、图像复原等多个研究方向。以下是论文亮点解读,enjoy~

👇

01

Oral:Synergistic Self-Supervised and Quantization Learning

自监督学习与量化协同互助

自监督学习由于可以避免对大量数据标注的需求,已成为当前学界和工业界的关注重点。 但将当前的自监督模型经由低比特量化实现部署时,发现模型精度出现严重下降, 限制它们在资源受限场景下的应用。为改善该现象, 论文中提出一种自监督学习和量化协同互助的方法(SSQL)来赋予自监督预训练模型量化友好的性质。SSQL 不仅在量化到不同比特时能显著改善模型精度,同时在多数实验中浮点模型原始精度也得到了进一步提升。SSQL只需要训练一次且不需要引入额外的模型参数就可以实现模型具备量化到不同位宽的能力。

b36a10b98f40e35e68d67d16acf1627d.png

👉关键词:self-supervised learning, quantization, pretrained, once-for-all

02

Real-Time Intermediate Flow Estimation for Video Frame Interpolatio

视频插帧中的实时中间流估计

视频插帧算法被广泛用于视频处理、多媒体播放器和显示设备上。本文提出了一种基于实时中间流估计的视频插帧算法 RIFE,包括一个端到端的高效的中间流估计网络 IFNet ,以及基于特权蒸馏的光流监督框架。RIFE 支持在两帧之间的任意时刻点插帧,在多个数据集上达到了最先进的性能且不依赖于任何的预训练模型。相比目前流行的 SuperSlomo 和 DAIN 技术,RIFE 实现了 4 至 27 倍的加速且取得更好的视觉效果。通过调制 IFNet 的时间编码输入,RIFE 还能支持包括动态场景图像拼接等应用。RIFE 相关代码已开源( https://github.com/megvii-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值