计算机视觉与深度学习 | 视觉里程计(Visual Odometry,VO)研究现状

本文介绍了视觉里程计(Visual Odometry, VO)在计算机视觉和人工智能领域的研究现状,强调了它在机器人定位与导航中的重要性。随着技术发展,视觉里程计从最初的特征点和光流方法演变为融合多传感器数据的VIO系统,提高了定位精度。国外研究主要集中在特征点方法和光流法,而国内则在鲁棒性和实时性上有所突破。未来,视觉里程计将继续与深度学习和多传感器融合技术结合,推动智能机器人技术的发展。" 96315697,8339232,跨域获取实时用户数据,"['前端开发', '用户认证', '数据交互', 'HTTP Cookie']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

=====================================================
github:https://github.com/MichaelBeechan
CSDN:https://blog.csdn.net/u011344545

=====================================================

研究背景及意义

  • 21世纪是计算机视觉(Computer Vision,CV)和人工智能(Artificial Intelligence,AI)快速兴起的时代。随着AlphaGo击败人类职业围棋选手[1]、扫地机器人以及波士顿动力公司开发的各种机器人的出现,机器人、人工智能、神经网络等不再是陌生的词汇。机器人是机械与智慧的完美结合,由于其广泛应用,渐渐成为人类生活的重要组成部分。未来,机器人产业将引领潮流,成为影响国家综合国力、现代高科技战争及青少年教育的重要因素。机器人是一种将计算机技术、传感器技术、微电子技术、自动化控制、通讯技术以及数学等学科融为一体的智能产物,其应用领域在不断拓展,并且吸引了大量的投资商[2]。
  • 智能移动机器人技术的迅速发展,使得人类开始致力于机器人的实际场景应用:从室内的扫地机器人、AR、VR再到室外(野外)的无人驾驶汽车、无人机、水下环境监测(探测)机器人等,均得到了广泛的关注。不管是室内还是室外机器人的研究都会碰到一个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值