
数据领域最激动人心的发展之一是湖仓一体功能在所有主要数据库供应商中的兴起。Snowflake 和 SQL Server 长期以来一直采用这一点,现在 PostgreSQL 正在通过 pg_lakehouse 拥抱这种范式转变,使得利用现代数据湖进行分析、AI 等比以往任何时候都更容易。随着越来越多的传统数据库继续允许您查询对象存储中的数据,AWS 选择弃用 Amazon S3 Select,这也许并非巧合。该领域有更多的进入者可以成功地为客户提供此功能以及更多功能。
虽然绿地化提供了为特定用例定制技术堆栈的快感,但完整的淘汰和替换策略很少可行,也不明智。相反,前进的道路在于利用现有的数据库技术进行计算,同时投资于世界一流的对象存储。在这个现代时代,数据和存储才是真正的价值,因为查询引擎虽然很重要,但已经变得商品化和可互换。pg_lakehouse使目前使用PostgreSQL的许多企业能够采用这种策略,使他们能够在不牺牲现有投资的情况下使用现代数据湖为未来进行构建。pg_lakehouse 是由 ParadeDB 开发的开源扩展。此扩展利用了 PostgreSQL 现有的外部数据包装器功能,并通过与 Apache DataFusion 的集成进行了增强,以提供对各种数据源的高性能分析。
从 SQL 到对象存储:新前沿
PostgreSQL长期以来一直支持外部表和扩展,使其能够与外部数据源进行交互。新的 pg_lakehouse 扩展