机器学习常用的python库

在机器学习领域,Python有许多广泛使用的库,以下是其中一些主流且重要的库:

  1. NumPy

    • 提供了高效的多维数组和矩阵操作,是大多数机器学习库的基础。
  2. Pandas

    • 提供了DataFrame对象,方便进行数据预处理和分析,对于特征工程极其重要。
  3. SciPy

    • 提供了数值计算、优化、插值、统计学、线性代数等方面的函数,是机器学习算法实现的基础。
  4. Scikit-learn

    • 机器学习领域的黄金标准库,涵盖了监督学习、无监督学习和强化学习的多种算法,包括分类、回归、聚类、降维等。
  5. TensorFlow

    • Google开发的开源库,用于高性能数值计算,特别适合实现和部署深度学习模型。
  6. Keras

    • 一个用于构建和训练神经网络的高级API,可以运行在TensorFlow、Microsoft Cognitive Toolkit (CNTK) 和 Theano之上。
  7. PyTorch

    • Facebook开发的开源库,同样支持深度学习模型的构建和训练,以其动态计算图和易用性受到广大开发者喜爱。
  8. MXNet

    • 一种灵活高效的深度学习库,由Amazon AWS团队参与维护,支持多种编程接口。
  9. Theano

    • 虽然现在不再积极维护,但曾是早期深度学习研究的重要工具,主要用于符号表达式计算和梯度计算。
  10. LightGBMXGBoost

    • 两种流行的梯度提升决策树库,适用于回归和分类任务,尤其在机器学习竞赛中有出色表现。
  11. CatBoost

    • 由Yandex开发的另一种优秀的梯度提升决策树库,擅长处理分类和回归问题,尤其在处理类别型特征上有很好的优化。
  12. Imbalanced-Learn

    • 用于处理不平衡数据集的库,提供了多种重采样技术以平衡训练集。
  13. SHAP

    • 解释机器学习模型预测结果的工具包,提供了SHapley Additive exPlanations (SHAP) 方法。
  14. MatplotlibSeaborn

    • 用于数据可视化,分析数据分布、模型评估结果等。
  15. HyperoptOptunaScikit-optimize

    • 用于超参数优化,自动化调参,提升模型性能。
  16. OpenCVPillow

    • 图像处理库,常用于计算机视觉和深度学习中图像预处理环节。

以上库在实际应用中常常结合使用,共同构建起机器学习项目的基础设施。随着技术发展,还有许多其他新兴库不断涌现,如Fast.ai、Hugging Face Transformers等,也在特定领域发挥重要作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值