新PyTorch API:几行代码轻松搞定多种注意力变体

8cfb4c73b94b9922c90f087609bbd068.png

机器之心报道

用 FlexAttention 尝试一种新的注意力模式。

理论上,注意力机制就是你所需要的一切。然而在实际操作中,我们还需要优化像 FlashAttention 这样的注意力机制的实现。

尽管这些融合的注意力机制大大提高了性能,且支持长上下文,但这种效率的提升也伴随着灵活性的丧失。对于机器学习研究人员来说,这就像是一种「软件彩票」—— 如果你的注意力变体不适合现有的优化内核,你将面临运行缓慢和 CUDA 内存不足的困境。 

一些注意力变体包括因果注意力、相对位置嵌入、Alibi、滑动窗口注意力、PrefixLM、文档掩码、不规则张量、PagedAttention 等。更糟糕的是,人们通常希望将这些变体组合在一起!比如滑动窗口注意力 + 文档掩码 + 因果注意力 + 上下文并行,又比如 PagedAttention + 滑动窗口的组合。

下图左侧代表了当今的现状 —— 一些掩码 + 偏置 + 设置的组合已经有现成的内核实现。然而,各种选项的添加会导致设置呈指数级增长。更糟糕的是,这种方式不会支持新的注意力变体。 

f320c5640bf7b588d4987e8ecf394da7.png

为了彻底地解决这个超立方体问题,PyTorch 团队引入了 FlexAttention,一个新的 PyTorch API。

  • FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。

  • 团队人员通过 torch.compile 将其降低到一个融合的 FlashAttention 内核中 ,生成了一个不会占用额外内存且性能可与手写内核相媲美的 FlashAttention 内核。

  • 利用 PyTorch 的自动求导机制自动生成反向传播。

  • 最后,PyTorch 团队还可以利用注意力掩码中的稀疏性,从而显著改善标准注意力实现。

FlexAttention

经典的注意力方程式如下:

a6cf0ec2615f40372e4979fd9d6fdf82.png

代码形式:

2ed5a4937d57ba2302ad207147080b83.png

FlexAttention 形式如下,其通过接受用户定义的函数 score_mod 来解决上述问题。

99187371d6b2616e199af43d1dadef92.png

代码形式:

97dc43659551111256613ed136acc804.png

此函数允许用户在 softmax 之前修改注意力分数。研究人员发现,该函数最终足以满足大多数用户对注意力变体的需求。

具体而言,score_mod 如下:

be595fd0b98925e59d92e4ad4c65ea4c.png

要应用此函数,可以将其实现为:

for b in range (batch_size):
    for h in range (num_heads):
        for q_idx in range (sequence_length):
            for kv_idx in range (sequence_length):
                modified_scores [b, h, q_idx, kv_idx]
 = score_mod (scores [b, h, q_idx, kv_idx], b, h, q_idx, kv_idx)

最终的 API 具有令人惊讶的表达能力。

Score Mod 示例

全注意力

在这种情况下,score_mod 无操作,它接受分数作为输入,然后原样返回它们。

4dd2f716a2fbbc05d8cc70da81df41c7.png

然后端到端的使用。

07c5d763d011bb844eb9676d3faed9ca.png

相对位置编码

一种常见的注意力变体是相对位置编码。相对位置编码不是对查询和键中的绝对距离进行编码,而是根据查询和键之间的距离调整分数。

c2dc111f58cd0bc343db5928d1b23316.png

需要注意的是,与典型实现不同,这不需要具体化 SxS 张量。相反,FlexAttention 会在内核中动态计算偏差值,从而显著提高内存和性能。

ebf8eae6710e4585dc81af302cc5863e.png

Soft-capping

Soft-capping 是 Gemma 2 和 Grok-1 使用的一种技术,在 FlexAttention 中,它的形式是这样的:

29f1be093561826708ead54f6da45bdb.png

Causal Mask

尽管双向注意力很简单,但在论文《Attention is All You Need》,以及其他的 LLM 中,它们的设置都是仅解码器的注意力,其中每个 token 只能关注它之前的 token。如果用户使用 score_mod API ,可以将其表示为:

8ffda84bdfb5b40661f860242db8654f.png

Sliding Window + Causal

6068f9592810157df948edb05ebc088f.png

图源:https://arxiv.org/abs/2310.06825

Mistral 一直在推广滑动窗口注意力(也称为局部注意力),它允许查询 token 仅关注最近的 1024 个 token,通常与因果注意力一起使用。

9534b63784c01ae974fc0e1c8ba7e517.png

研究者对带有滑动窗口掩码的 F.scaled_dot_product_attention 以及带有因果掩码的 FA2 进行基准测试。结果表明,FlexAttention 不仅明显快于 F.scaled_dot_product_attention,也明显快于带有因果掩码的 FA2。

f2336229adb4a3c2c69615e1fc863248.png

性能

总体而言,FlexAttention 的性能几乎与手写的 Triton 内核一样好。然而,由于 FlexAttention 具有通用性,因此会遭受轻微的性能损失。例如,用户必须承受一些额外的延迟。

FlexAttention 在前向传播中实现了 FlashAttention2 性能的 90%,在反向传播中实现了 85%。FlexAttention 目前正在使用一种确定性算法,该算法比 FAv2 重新计算了更多的中间体,研究者计划改进 FlexAttention 的反向算法,来缩小这一差距!

e69485c8035a16088b4e647ebbd68ec5.png

b2f50e7b0ee25683b3ca9d52538d3a9e.png


好书推荐

既适合深度学习的初学者及第一次接触 PyTorch 的研究人员阅读,也适合有一定 PyTorch 使用经验的用户阅读,帮助他们建立对 PyTorch 的基本认识,提高使用 PyTorch 框架解决实际问题的能力。


整理不易,点赞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值