【图像压缩感知】DEEP NETWORKS FOR COMPRESSED IMAGE SENSING(CVPR)

该研究提出了一种新的方法,通过深度网络解决压缩感知中的采样矩阵设计和图像重建问题。针对传统方法的高时间复杂度,作者训练了一个用于采样矩阵的网络,并提出一个快速的非迭代深度重建算法,以提高图像重建质量。实验表明,这种端到端的深度网络可以在保持高效的同时,提供高质量的图像重建效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基本信息

K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed measurements,” in IEEE Conf. Comp. Vision and Pattern Recog (CVPR), June 2016.

关键词:Compressed sensing, deep networks,sampling mechanism

研究问题:在压缩感知理论中,存在着两个重要的挑战:

(1)设计高效的采样机制;

(2)设计重建算法以得到最高质量的重建图像。

作者针对以上两个问题:借助于一个深度网络展开研究。首先使用网络训练的方式训练了一个采样矩阵;然后提出了一个深度网络来重建图像。

2、核心内容

(1)研究背景

针对目前常用的采样矩阵的缺点,指出设计采样矩阵的迫切性。此外,在重建方法上,作者指出其他方法的图像重建性能虽然较好,但是却具有较高的时间复杂度。

本文工作:设计一个采样矩阵;提出一个快速的非线性重建算法。

(2)提出的网络

traditional BCS-SPL methods consist of three steps including compressed sampling, initial reconstruction and

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星月夜语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值