1、基本信息
K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively sensed measurements,” in IEEE Conf. Comp. Vision and Pattern Recog (CVPR), June 2016.
关键词:Compressed sensing, deep networks,sampling mechanism
研究问题:在压缩感知理论中,存在着两个重要的挑战:
(1)设计高效的采样机制;
(2)设计重建算法以得到最高质量的重建图像。
作者针对以上两个问题:借助于一个深度网络展开研究。首先使用网络训练的方式训练了一个采样矩阵;然后提出了一个深度网络来重建图像。
2、核心内容
(1)研究背景
针对目前常用的采样矩阵的缺点,指出设计采样矩阵的迫切性。此外,在重建方法上,作者指出其他方法的图像重建性能虽然较好,但是却具有较高的时间复杂度。
本文工作:设计一个采样矩阵;提出一个快速的非线性重建算法。
(2)提出的网络
traditional BCS-SPL methods consist of three steps including compressed sampling, initial reconstruction and