【压缩感知】Convolutional Neural Networks for Non-iterative Reconstruction of Compressively Sensed Images

本文提出了一种基于卷积神经网络(CNN)的非迭代图像重构方法,用于压缩感知(CS)图像重建。为了解决传统迭代算法的时间复杂度问题,作者提出ReconNet(Euc)和ReconNet(Euc + Adv)模型,其中ReconNet(Euc + Adv)引入了对抗性损失以提升重构质量。通过对比实验,展示了在不同采样率下,该方法相对于其他方法的稳定性能,并在鹦鹉图片上进行了测试评估。此外,讨论了采样矩阵的优化,包括使用循环矩阵和探索卷积采样策略的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基本信息

论文:S. Lohit, K. Kulkarni, R. Kerviche, et al, Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images, IEEE Trans. Comput. Imaging. 4 (2018) 326–340.

关键词:压缩感知,卷积神经网络,GAN网络

概述:

  • 为了克服早期迭代算法的高时间复杂度缺点,作者提出了一个数据驱动型的非迭代算法。
  • 作者基于他们先前的工作([*]ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements (CVPR))
  • 作者为了进一步提高重构质量,提出了一种利用对
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星月夜语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值