目录
7.1.9. 分析函数:row_number() over()——分组TOPN
1 什么是hive
1.1 hive基本思想
Hive是基于Hadoop的一个数据仓库工具(离线),可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。
1.2 为什么要使用Hive
- 直接使用hadoop所面临的问题
人员学习成本太高
项目周期要求太短
MapReduce实现复杂查询逻辑开发难度太大
- 为什么要使用Hive
操作接口采用类SQL语法,提供快速开发的能力。
避免了去写MapReduce,减少开发人员的学习成本。
功能扩展很方便。
1.3 Hive得特点
- 可扩展
Hive可以自由的扩展集群的规模,一般情况下不需要重启服务。
- 延展性
Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
- 容错
良好的容错性,节点出现问题SQL仍可完成执行。
2 hive的基本架构
Jobtracker是hadoop1.x中的组件,它的功能相当于:
Resourcemanager+MRAppMaster
TaskTracker 相当于:
Nodemanager + yarnchild
3 Hive安装
最简安装:用内嵌derby作为元数据库
准备工作:安装hive的机器上应该有HADOOP环境(安装目录,HADOOP_HOME环境变量)
安装:直接解压一个hive安装包即可
此时,安装的这个hive实例使用其内嵌的derby数据库作为记录元数据的数据库
此模式不便于让团队成员之间共享协作
3.2. 标准安装:将mysql作为元数据库
3.2.1. mysql安装
① 上传mysql安装包
② 解压:
[root@mylove ~]# tar -xvf MySQL-5.6.26-1.linux_glibc2.5.x86_64.rpm-bundle.tar
③ 安装mysql的server包
[root@mylove ~]# rpm -ivh MySQL-server-5.6.26-1.linux_glibc2.5.x86_64.rpm
PS:假如依赖报错:
缺perl
yum install perl
安装完perl后 ,继续重新安装mysql-server
(可以配置一个本地yum源进行安装:
1、先在vmware中给这台虚拟机连接一个光盘镜像
2、挂在光驱到一个指定目录:mount -t iso9660 -o loop /dev/cdrom /mnt/cdrom
3、将yum的配置文件中baseURL指向/mnt/cdrom
)
[root@mylove ~]# rpm -ivh MySQL-server-5.6.26-1.linux_glibc2.5.x86_64.rpm
又出错:包冲突conflict with
移除老版本的冲突包:mysql-libs-5.1.73-3.el6_5.x86_64
[root@mylove ~]# rpm -e mysql-libs-5.1.73-3.el6_5.x86_64 --nodeps
继续重新安装mysql-server
[root@mylove ~]# rpm -ivh MySQL-server-5.6.26-1.linux_glibc2.5.x86_64.rpm
成功后,注意提示:里面有初始密码及如何改密码的信息
初始密码:/root/.mysql_secret
改密码脚本:/usr/bin/mysql_secure_installation
④ 安装mysql的客户端包:
[root@mylove ~]# rpm -ivh MySQL-client-5.6.26-1.linux_glibc2.5.x86_64.rpm
⑤ 启动mysql的服务端:
[root@mylove ~]# service mysql start
Starting MySQL. SUCCESS!
⑥ 修改root的初始密码:
[root@mylove ~]# /usr/bin/mysql_secure_installation 按提示
⑦ 测试:
用mysql命令行客户端登陆mysql服务器看能否成功
[root@mylove ~]# mysql -uroot -proot
mysql> show databases;
⑧ 给root用户授予从任何机器上登陆mysql服务器的权限:
mysql> grant all privileges on *.* to 'root'@'%' identified by '你的密码' with grant option;
Query OK, 0 rows affected (0.00 sec)
mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)
注意点:要让mysql可以远程登录访问
最直接测试方法:从windows上用Navicat去连接,能连,则可以,不能连,则要去mysql的机器上用命令行客户端进行授权:
在mysql的机器上,启动命令行客户端:
mysql -uroot -proot
mysql>grant all privileges on *.* to 'root'@'%' identified by 'root的密码' with grant option;
mysql>flush privileges;
3.2.2 hive的元数据库配置
vi conf/hive-site.xml
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
<description>password to use against metastore database</description>
</property>
</configuration>
2、上传一个mysql的驱动jar包到hive的安装目录的lib中
3、配置HADOOP_HOME 和HIVE_HOME到系统环境变量中:/etc/profile
4、source /etc/profile
5、hive启动测试
然后用命令启动hive交互界面:
[root@hdp20-04 ~]# hive
4 hive使用方式
4.1 最基本使用方式
启动一个hive交互shell
bin/hive
hive>
设置一些基本参数,让hive使用起来更便捷,比如:
1、让提示符显示当前库:
hive>set hive.cli.print.current.db=true;
2、显示查询结果时显示字段名称:
hive>set hive.cli.print.header=true;
但是这样设置只对当前会话有效,重启hive会话后就失效,解决办法:
在linux的当前用户目录中,编辑一个.hiverc文件,将参数写入其中:
vi .hiverc
set hive.cli.print.header=true;
set hive.cli.print.current.db=true;
4.2 启动hive服务使用
启动hive的服务:
[root@hdp20-04 hive-1.2.1]# bin/hiveserver2 -hiveconf hive.root.logger=DEBUG,console
上述启动,会将这个服务启动在前台,如果要启动在后台,则命令如下:
nohup bin/hiveserver2 1>/dev/null 2>&1 &
启动成功后,可以在别的节点上用beeline去连接
方式(1)
[root@hdp20-04 hive-1.2.1]# bin/beeline 回车,进入beeline的命令界面
输入命令连接hiveserver2
beeline> !connect jdbc:hive2//mini1:10000
(minil是hiveserver2所启动的那台主机名,端口默认是10000)
方式(2)
启动时直接连接:
bin/beeline -u jdbc:hive2://mini1:10000 -n root
接下来就可以做正常sql查询了
4.3 脚本化运行
大量的hive查询任务,如果用交互式shell来进行输入的话,显然效率及其低下,因此,生产中更多的是使用脚本化运行机制:
该机制的核心点是:hive可以用一次性命令的方式来执行给定的hql语句
[root@hdp20-04 ~]# hive -e "insert into table t_dest select * from t_src;"
然后,进一步,可以将上述命令写入shell脚本中,以便于脚本化运行hive任务,并控制、调度众多hive任务,示例如下:
vi t_order_etl.sh
#!/bin/bash
hive -e "select * from db_order.t_order"
hive -e "select * from default.t_user"
hql="create table default.t_bash as select * from db_order.t_order"
hive -e "$hql"
如果要执行的hql语句特别复杂,那么,可以把hql语句写入一个文件:
vi x.hql
select * from db_order.t_order;
select count(1) from db_order.t_user;
然后,用hive -f /root/x.hql 来执行
5. hive建库建表与数据导入
5.1. 建库
hive中有一个默认的库:
库名: default
库目录:hdfs://hdp20-01:9000/user/hive/warehouse
新建库:
create database db_order;
库建好后,在hdfs中会生成一个库目录:
hdfs://hdp20-01:9000/user/hive/warehouse/db_order.db
5.2. 建表
5.2.1. 基本建表语句
use db_order;
create table t_order(id string,create_time string,amount float,uid string);
表建好后,会在所属的库目录中生成一个表目录
/user/hive/warehouse/db_order.db/t_order
只是,这样建表的话,hive会认为表数据文件中的字段分隔符为 001
正确的建表语句为:
create table t_order(id string,create_time string,amount float,uid string)
row format delimited
fields terminated by ',';
这样就指定了,我们的表数据文件中的字段分隔符为 ","
5.2.2. 删除表
drop table t_order;
删除表的效果是:
hive会从元数据库中清除关于这个表的信息;
hive还会从hdfs中删除这个表的表目录;