大学生数学建模常用模型之线性回归

本文介绍了线性回归在数学建模中的应用,包括一元和多元线性回归分析,详细阐述了模型的作用、输入输出描述,并通过案例分析展示如何进行线性回归操作。案例涉及房价预测,模型表现优秀,无多重共线性问题。同时,文章提醒注意数据处理方式,特别是定类数据的哑变量化。最后,提到了线性回归的理论基础及适用方法,如最小二乘法,并提供了相关参考文献和学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、作用

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

2、输入输出描述

输入:自变量X至少一项或以上的定量变量或二分类定类变量,因变量Y要求为定量变量(若为定类变量,请使用逻辑回归)。

输出:模型检验优度的结果,自变量对因变量的线性关系等等

3、案例示例

示例:通过自变量(房子年龄、是否有电梯、楼层高度、房间平方)拟合预测因变量(房价)

4、案例数据

image.png

5、案例操作

Step1:新建分析;

Step2:上传数据;

Step3:选择对应数据打开后进行预览,确认无误后点击开始分析;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值