
Modeling and Animating for Half-Life

An Overview of the Half-Life Modeling Process ... 3

Exporting from 3Dstudio... 3

SMD files... 3

QC file ... 4

StudioMdl .. 4

The finished product: .MDL files... 4

Modelling Workflow .. 5

Planning A New Model ... 5

Budgeting Polygons.. 5

Budgeting Textures .. 6

Planning for animation.. 7

Setting up your work files ... 9

Modeling Basics .. 11

Building a Mesh .. 11

Strategies.. 11

Max tools overview ... 12

Texturing Basics ... 17

Setting Max Materials ... 17

Painting your maps... 19

Applying textures .. 20

Creating a skeleton ... 23

Overview ... 23

What is a bone?.. 23

Building a Skeleton... 24

Attaching Meshes to the skeleton ... 26

Animation Basics .. 29

Animation system overview.. 29

Animating your model... 31

Basic Animation Tasks ... 32

Animations in the game engine.. 35

Advanced Modeling and animation .. 37

Advanced Modeling.. 37

Advanced Texuring... 39

Advanced animation... 41

QC file reference.. 42

QC Files .. 42

QC command listing ... 43

The $sequence command.. 48

SMD file format .. 51

StudioMDL reference .. 54

Command line options.. 55

Reading output ... 55

Action Tags .. 56

Working with Half-Life Content from the Half-Life SDK... 59

An Overview of the Half-Life Modeling Process

This document is an introduction to modeling and animating characters for the Half-Life engine. In it
we will discuss the basic techniques for creating a model, attaching into a skeleton, animating it,
and exporting it into the Half-Life engine.

All of the models in the shipping version of Half-Life were created with 3-D studio Max from Kinetix
Inc., and the export tools included with this SDK currently only support Max. In principle, however,
there’s no reason why any other 3-D package could not be used with if you can write a simple file
exporter. Models could even be generated programmatically by programs such as Mathematica, or
even by Java scripts. Valve encourages developers to write translators for other popular 3-D
packages and may be able to provide advice to teams seeking to develop their own export plug-ins.
For the remainder of this tutorial we will be discussing tools and procedures in the 3dStudio
environment; however the basic principles involved will not change if the model and animation data
originate in other programs.

Three steps are involved in moving the model data from the 3DStudio into the Half-Life engine.

First, a text based intermediate file known as a “Studio Model Data” or SMD file, is exported from
the modeling package.

Next, a control script which will direct the final model generation program is written. This is also a
text file, known as a QC file because it evolved from the old Quake engine QuakeC scripting
system.

Finally the command line program studioMDL.EXE analyzes the QC file and converts the .smd
file(s) into a Half-Life .MDL model file complete with textures, animation data, and game data such
as the handles which the AI system uses to call animations.

Understanding the nature of this process is indispensable for easily and quickly making Half-Life
models. Here is a more detailed look at each of steppingstones from 3dStudio to the Half-Life
engine:

Exporting from 3Dstudio
There are two paths for exporting data from studio Max to the SMD files. Included with the Half-Life
SDK is a Max plug-in SMDEXP.DLO. This is available in versions supporting Max 1.2 through 3.1;
source code is also included so you can recompile new versions as necessary or make
customizations. Installing the plug-in requires only that you drop the appropriate plug-in file(s) into
the plug-ins folder of your 3Dstudio Max directory and restart Max . To access the exporter you
simply choose “Export…” from Max’s File menu. The standard exporter requires the Physique plug-
in from Kinetix’s Character Studio to enable skeletal animation; without Physique only unarticulated
models without skeletons can be exported.

Also included with the SDK is an SMD exporter based on Kinetix’s Max Script scripting language.
This is included primarily for users to do not have access to Character studio. The Max Script
exporter supports the standard Max r3.x plug-ins Skin and Linked Xform as alternative methods for
attaching for vertices to bones. The Max Script exporter requires Max version 3.0 or higher.

SMD files

SMD files come in two “flavors.” The Reference SMD file is a complete snapshot of the model,
including its geometry, its skeletal structure, its texture, and the links between its mesh vertices and
its skeleton. Reference SMDs do not contain any animation data -- they produce only a static image
of the complete model at one point in time.

Animation SMDs, on the other hand, contain only animation data and enough skeletal information
for the StudioMdl program to be sure that the animation data matches the skeleton of the reference
model. As you can see any animated model will require at least two SMDs – and a glance at the
Half-Life source files in the SDK will show you that most models include a very large number of
animation files. Most models however will use
only a single reference SMD.

As an aside it should be noted that since both
kinds of SMD files are text-based they can be
edited by hand. There may situations where
this is a useful time-saver. The SMD file format
is included in an appendix to this document.

QC file
It may be helpful to think of the QC files as a
kind of table of contents for model projects: the
QC provides a complete list of all the assets
which will be included in a finished model. The
primary function of the QC is to tell the
StudioMdl program where to find textures and
SMD files. This SDK includes a Max Script
which can help you generate simple QC files.

The QC is also the place where game-engine
data is specified. For example, the QC file tells
the engine which bone controls the scientist model’s mouth, or where the Gargantua’s glowing eye
sprite attaches, or how big a target the headcrab is. These topics are dealt with in detail in the
chapter devoted to QC files below.

StudioMdl
StudioMdl.EXE is the command-line program that actually creates the Half-Life model files. It
takes the name of a QC file as a command parameter and uses the QC to find the relevant SMD
and texture files. The program also provides feedback on the amount of memory used for the
completed model’s geometry, textures, and animation data, which can be useful in debugging and
optimizing your models.

The finished product: .MDL files
The final output the process is a Half-Life model (.MDL) file, which contains all of the model data:
geometry, textures, animations, AI hooks, and so on. It’s ready to be called by relevant code.

Seeing your model in the game
If you want to test the model in the game environment, you can insert it into a game map by placing
WorldCraft cycler entity where you want the model to appear. The cycler will allow you to see the
model when you view it in the game -- in classic first-person-shooter manner, you browse through
the model’s animations by shooting at the cycler.

An Alternative To 3DStudio
MilkShape by Mete Ciragan is a shareware
modeling program with excellent support for Half-
Life modeling and the ability to export SMD files. A
version of MilkShape is available is included with the
Half-Life SDK 2.1 or online at
http://www.swissquake.ch/chumbalum-soft/ms3d1x/

There are MilkShape tutorials online at:

http://www.swissquake.ch/chumbalum-
soft/ms3d1x/docs/ms3dbasics/ms3dbasics-01.html.

MilkShape is produced independently and Valve
takes no responsibility for the program or its
performance. Contact and copyright information are
included with the program in the SDK.

If your monster/character code isn’t working yet, you can also check the appearance of simple
behaviors (such as walks or death animations) by placing the model in WorldCraft as a “Monster-
Generic” entity – effectively an empty AI shell that only knows how to move, run away, and die
when shot. Since monster-generics can also play scripted sequences you can test any animation by
calling it from a scripted sequence – this is a good way to get around some of the distractions
caused by the fact that cyclers will loop continuously.

Viewing models with HLMV
There are a number of shareware programs available on line which will enable you to inspect a
Half-Life model without needing to run WorldCraft or the game engine. The SDK includes
HLMV.exe, a shareware model viewer with several useful features including the ability to turn hide
textures, to show bones, and to play back animations at varying speeds. For more information
about HLMV see the appropriate folder in the SDK.

Modeling Workflow

Planning A New Model
Building and animating a model is an inherently complex process, and good planning will make the
job much easier. While it’s certainly possible to make a successful model on instinct alone,
devoting a few minutes at the outset to getting a good grasp of the whole arc of the task at hand is a
good investment.

Modeling for a real-time game such as Half-Life demands some important decisions be made
before the first polygon is built. At the very minimum, you should have a rough idea of how
important the new model is to your project, what kind of performance characteristics you want from
the model, and how much memory you can devote to it. It’s also a good idea to think about the
organization of your source material, since StudioMdl will need to be told where the building blocks
of the model are located.

How important is this model?
Knowing the role that a new model will play in your project is an important first step, because many
other decisions flow from the relative priority you are according to this element of your game.
Memory and artist time are finite resources and should be allocated with care.

A number of characteristics can influence the polygon and texture budgets assigned to your model.
A monster that attacks in packs, like the Half-Life Houndeye, will almost certainly have a lower
polygon budget than a model that appears on its own. Models that appear everywhere in the game,
like the Half-Life scientist, may need to be more efficient with textures than a model that’s only
appearing in a handful of scenes. Remember that game performance is based on the total amount
of polygons (and to a lesser extent, the number and size of textures in memory) at any given time.
You will have to make trade-offs between the resources available for different elements if these will
co-exist on screen or in memory at the same time. The Half-Life weapon view models – each of
which had to be able to be on screen at any time – had less than 150k of texture memory.

Budgeting Polygons
The number of polygons in a model depends on several factors. You should have a clear idea of
what your target machine is, and how many polygons it can deliver at a reasonable framerate. In
Half-Life we assumed a 166mhz Pentium with 24mb of memory and a 1mb Voodoo I accelerator
card. We found experimentally that in an “average” room we could display around 3,000 polygons
at a “reasonable” framerate of 12-15 frames per second. However only the Gargantua, Nihilanth,

Gonarch models came anywhere near this total because they all were intended to appear in very
carefully designed situations. Most of the human-sized characters were between 500 to 750
polygons, and pack monsters like the Houndeye were even lower. Don’t forget to include weapon
viewmodels, gib models and so on in your on-screen budget before figuring out how many polygons
you can allot to a particular model.

 Today’s machines are capable of pushing far more polygons, so these limits would be considerably
larger if the game were to be made now. Nevertheless economy in polygon use is always a good
idea.
We talk about a model’s “polygon count” when discussing its efficiency, but in many ways the real
determining factor is the number of vertices in the model. Since the vertices determine both the
shape of the model and other factors, such as how a texture or smooth group will be placed it is
really the vertices you should be thinking about optimizing. Every vertex in your model must be
there to do one of three things:

 Establish a significant contour

 What “significant” means in the context of your model is ultimately a judgment call.
You should decide if a contour is significant based on how often, how long, and
how well a model will be seen in the game – you can skimp on the details on the
top of a 20’ tall monster’s head if you’ll never be looking down on him. The basic
rule of thumb is to discard a vertex if the player is unlike to notice its absence. If the
vertex does establish either the model’s outline or a significant aspect of it’s
shading (if, for example, you need to convey that a particular object is concave or
convex as opposed to flat) it makes the cut; otherwise it’s not really necessary.

 Hold a texture coordinate

 Since textures are a property of the individual triangles, if you need a certain space
to hold different textures you will need different polygons – and thus different
vertices – to hold them. The same holds true if you are using parts of the same
texture map with several different projections.

 Keep an animating object’s shape

 Since your model will be animating, you will need vertices to keep the model’s
shape intact as its skeleton moves around. A pair of legs could be modeled as a
simple tube if the knee were never bent; but in an animated model you would need
a ring of vertices to maintain the shape of the calf and another for the thigh.

Obviously there is more art than science in making these judgments, and there may be situations in
which no good answer can be easily found. However a good global understanding of how your
model fits in to the project as a whole is the best starting point for making the necessary trade-offs.

Finally, you will also need to decide if the model will have multiple versions (“bodygroups” – the
$bodygroup command in the QC file documentation, p. 44) such as the various weapons on the
Half-Life soldiers or the swappable heads on the scientist model. Remember to include the
polygons for such items in your budget.

Budgeting Textures
Budgeting textures is somewhat different from budgeting polygons. You do get some help from the
fact that the Half-Life engine automatically shares texture information between multiple instances of
the same model. This means that a whole screen of Houndeyes or Vortigaunts uses no more
texture memory than a displaying a single individual. On the negative side, however, any time a
model’s data is accessed – even if it is not displayed on screen! – its textures will be loaded (for a
partial solution to this problem see the sideboard on “External Textures” below). Moreover if you

exceed the texture memory limits of a hardware 3-d accelerator the performance hit is much more
obvious than the gradual slowdown imposed by polygon overload. In such a situation there is a
perceptible hitch in game play rather than a general degradation in framerate. For this reason
texture budgeting is, if anything, more critical to the success of a model than polygon counts.

Half-Life’s target system assumed a Voodoo I
accelerator card with only 1MB of texture
memory. For this reason many Half-Life
textures are extremely small. Even weapon
view models, which are on-screen almost
continuously, were limited to around 125k of
texture memory – about equivalent to two
256 pixel square maps at 8 bits. Characters
such as Barney (the security guard) used
256k, the equivalent of 512 x 512 bitmap.

Fortunately most contemporary accelerators
have much larger budgets and accordingly
higher texture resolutions. However the same
basic problem of resource allocation remains. Moreover the rise of GL-based hardware acceleration
has taken away a lot of freedom in your choice of texture sizes. OpenGL hardware generally wants
textures to come in power-of-2 sizes, i.e. dimensions of 2, 4, 8, 16, 32, 64, 128, 256 etc. Many
hardware cards have additional limitations as well. Older Voodoo-based cards will crash if given
textures with an aspect ratio greater than 8:1 (e.g. A 64 x 8 texture is OK but 256 x 16 is not). Other
cards want all of their textures to be squares. Unless you are absolutely certain about the hardware

you’ll be running on you should use only textures
which are power-of-2 squares (see table).

8 x 8 < 1k

16 x 16 < 1k

32 x 32 1 k

64 x 64 4 k

128 x 128 16 k

256 x 256 64 k

512 x 512 256k

As you can see from the table at left, this range of texture sizes does somewhat limit your ability to
fine-tune the amount of texture memory allocated to a model.

It may help your decision process somewhat to remember that there is a conceptual trade-off
between the complexity of geometry and the complexity of textures. A model with very stark
polygon limitations will depend very heavily on its textures for character, visual interest and the
appearance of greater detail. A model with more complex geometry may be able to use somewhat
lower resolution maps if geometry can be made to provide the model with visual impact.

Planning for animation
Perhaps the most difficult element of a new model to plan is its animation. Generally speaking
animation is the most difficult and time consuming part of the production process for models.
Fortunately skeletal animation data is quite inexpensive to store compared to geometry and

Powers-of-two textures

Texture size Memory footprint
for 8 bit texture

External Textures
The model caching system, which will load an
entire model to access any of its functions, can
impose steep memory costs. If you have a model
which you will need to access often without
displaying it on screen, you can use the QC
command $externaltextures to force the
model to store the texture data separately from the
rest of the model’s data. This is often useful for
optimizing texture usage. For more on external
textures, see the QC command listing, p. 38

textures. For this reason your animation planning should concentrate on establishing a clear idea of
your model’s movement style and required animations. The things your model will be called on to
do will dictate a great deal of how you construct it.

In a low polygon-count environment there are many arrangements of geometry that look good in
one pose and terrible in another. Make sure that the modeler knows where and how much the
character is intended to bend, because it is extremely difficult and time consuming to go back and
change the geometry of a finished character to fix a movement problem.

 Designing your skeletal structure
The skeleton of the model is the most important determinant of how it will animate. All Half-Life
animations are created by moving or rotating a bone. The mesh itself is not deformed directly
by the animator. This is a major change in methodology from older animation systems in which
every pose was, in essence, a complete morph target where each vertex could be tweaked by
hand. It is certainly possible to move individual vertices by attaching them each to their own
individual bones in the skeleton – however from a practical standpoint this technique is
cumbersome and should be used sparingly. It should also be obvious that the positioning of the
skeleton will determine the point around which limbs pivot and how far the deformations from a
movement will extend.

You can minimize time and effort by not creating a needlessly complex skeleton. Many modelers,
for example, will use the Character Studio biped as the basis for their skeletons. Few low-poly
characters will have individually modeled fingers or toes, however. It is a good idea to prune away
the unneeded extremities so that they don’t
clutter the animator’s workspace for no
reason. Moreover attaching vertices to the
skeletons in far more tedious if there are a
large number of small bones in the skeleton.
Finally, bear in mind that the animator’s
workload will be directly related to how easy it
is to pose your model -- a skeleton whose
every pose requires a dozen individual
rotations will take much longer to animate
than one which can be posed with a single IK
movement; on the other hand Max’s IK
engine itself is somewhat unstable and needs
careful planning to get good results. There
are good examples of how to set up a
skeleton in the Max r3 tutorial manual.

Skeletons and game engine data
The last point to consider when setting up your skeleton is what, if any, special functions your model
will have. Models can have attachment points which are hooks for the placement of sprites, weapon
models, or other in game entities on the model (see Attachment points for item, p.38). Every
attachment point must be attached to a bone, and it’s position in space is specified relative to the
bone’s coordinate system. If the coordinate system of the bone is skewed or hard to intuit, placing
attachment points will be unnecessarily difficult.

Bones can also be directly controlled by the game engine rather than animated by keyframes; good
examples of bone controllers are the jaws on the Barney and scientist models, which are moved by
audio input rather than by animation data. If you are planning on controlling any aspect of your
model in code you’ll need to include bones for the code to use. For more information on bone
controllers see Controllers on p. 41.

A note about scaling
The SMD Exporter recognizes only translation
(movement) and rotation; it does not have any
way of relaying changing scales to the engine. For
this reason any change of scale between the
animations and the reference file, or during an
animation, will cause Bad Things to happen to
your model in the game. If the model needs to be
scaled you can apply global scales in the QC file.
For the sake of safety, its best never to use the
scale tool on your skeleton (it is OK to scale
portions of a mesh while building the model,
however, since this does not involve the skeleton).
Since Max’s Mirror tool uses scale transforms to
do its work, the mirror tool is best avoided while
making skeletons.

Setting up your work files
The final step in planning your model is establishing a working hierarchy of source directories.
Consistency in file placement is extremely important because the QC files are the only method by
which StudioMDL can find the source files it needs; moving and renaming files may make it
impossible to rebuild a model when needed. The illustration on the next page contains a sample
directory tree which shows you how to organize a modeling project.

The advantage to this structure is that it allows you to standardize the location of resources for your
team. That way you can call StudioMdl from the Half-Life directory and give it only relative directions
to the QC files. If everybody on the team uses the same directory structure, anyone will be able to
rebuild the model without worrying about different drive letters or naming conventions. This
structure also makes it much easier to create and maintain a batch file for compiling QCs (see
discussion of batch files on p.42).

It’s also a good idea to establish firm naming conventions for your files. If you look at the Half-Life
files on the CD you’ll observe that many of them have confusing, non-descriptive names – we at
Valve learned the hard way about the value of using clear and informative names for our work. You
are free to adopt any system you choose, however – neither the exporter nor StudioMdl demand
any particular naming structure to function. The only features which affect your file names are
Chrome maps (see Chrome Maps, p. 40) and color-shifted multiplayer maps (see Team colors,
p.40)

Finally, it’s a good idea to plan on authoring your textures at somewhat larger sizes than you intend
to use – if more texture memory becomes available it’s difficult to scale up a finished texture to a
larger size, whereas it is quite simple to make a scaled down copy. Moreover the exporter requires
8-bit textures, but most paint programs work best in 24 bits. For this reason you should keep
separate copies of your 24-bit originals and your 8-bit final artwork. Its wise to keep the two in
separate folders to avoid accidental overwrites.

The next page illustrates a sample directory tree structure that works well with Half-Life
development tools.

Figure 1: sample directory tree structure

 Half-Life

Valve

Maps

MyMod – your project folder

Other mod related folders

Models – holds finished .mdls and source folders

Example.mdl

Other .mdl files

Example -- holds source files for example.mdl

Example.qc

Example_reference.smd

Example_animation1.smd

other animation smds

Maps-8bit

8 bit texture .bmp files

Maps-source

Photoshop or other texture source files

Modeling Basics

Building a Mesh
The following sections assume that you’re already familiar with the basics of the 3dStudio Max
interface. If you’re not familiar with any of the following concepts

• Editable Meshes

• Modifiers and the Modifier Stack

• Sub Objects

• Texture Maps

• Extrusion

You may want to see the appropriate sections of your Max documentation before continuing.

Strategies
Traditionally modelers have used two opposite approaches to modeling for real-time environments.
Many modelers begin with a simple geometric primitive, such as a sphere or a box, and then add
detail to the model by moving vertices, extruding faces, cutting or tessellating edges, and so on.
Others prefer to model a fully detailed character with all of the various tools that Max offers –
NURBS modeling, patches, CSG Booleans, and so forth – and then refine that model down to a
lower polygon-count editable mesh.

Which strategy you adopt is partly a function what you need to achieve with your model, and partly
a matter of personal preference. There is no reason why you cannot mix-and-match techniques
from both approaches. Here’s a quick overview of the pros and cons of the two different methods.

Modeling from the ground up
The biggest advantage to starting with a primitive and gradually reshaping it into a complete model
is that you’ll know exactly why each vertex is where it is. You can also keep a much tighter reign on
poly budgets because you don’t have the chance to become overly attached to a particularly nice
feature that you just can’t afford in polygon terms. Finally, you’ll have the advantage of knowing that
the entire mesh is a seamless network rather than a collection of intersecting, unconnected meshes
that can be hard to understand and clean up.

One common problem with the completely hand-modeled approach is obvious – you’ll be hand
positioning every vertex in your model. This can be a burden, particularly if you need to make
objects which are a compound of recognizable shapes – it’s difficult to get a satisfying sphere or
chamfered box by hand-editing alone. One must also work extra hard to avoid the tendency of
extruded-and-scaled models to be overly symmetrical and blocky. A good rule of thumb is that no
two vertices which do not have to be aligned should be – i.e., if you have a line of vertices defining
the line of a character’s back, and the back is not supposed to be rigidly straight, then you should
make sure those vertices are not simply stacked straight above each other.

High-to-low strategy
Modelers who prefer to work “from the top down” like the fact that the high-end tools, such as
NURBS and Booleans, give them the ability to conceptualize complex forms that would be difficult
or impossible to build from the ground up. Another advantage is that more complex geometry and
textures can be rendered out to form the basis of textures for less detailed models. Finally, top-
down models are usually more impressive for promotional purposes.

On the down side, top-down modeling can be inefficient, because it involves doing more work than
is absolutely necessary. Unfortunately the optimization tools provided by 3dStudio are generally not
good enough for automatic reduction of a mesh down to a useful figure, so there will be a lot of work
reducing the models you’ve already worked hard to build. There is also the danger of fixating on
details which are appealing in themselves but too small or too complex for your polygon budget.

Importing geometry from other programs
This is a good place to point out that you can import models from a large variety of other 3d
packages into 3dStudio Max . Max reads a number of formats including .DXF, which is supported
by most modeling packages. One of our modelers at Valve uses Hash Studios’ Animation Master to
generate all his meshes before completing them in Max . Others use Max plug-in modeling tools
such as MetaClay or DaVinci. If you are more comfortable modeling in another program, it is
perfectly possible to use Max simply for the final preparation of the model. The simple rule to
remember is that any object that can be converted into a Max editable mesh can be textured,
given a skeleton, and exported to Half-Life. Unfortunately there is no widely available
mechanism for importing animation into Max at the present time, so you will probably have to do
your animation work in Max regardless of where you create your geometry.

Max tools overview
However you make your meshes, there are a number of tools that impact directly on the way your
model will interact with the SMD exporter.

Edit Mesh modifiers and the Editable Mesh base object
Since the SMD export process only supports editable mesh objects, most of your work will be done
with Max’s mesh tools. Max offers two ways to work on a mesh. Any editable mesh object offers a
variety of tools for mesh editing, available in the command panel rollout.

 Alternatively adding an Edit Mesh modifier to any object will effectively convert it to an editable
mesh from that point in the Max stack onwards; Edit Mesh also offers a selection of mesh editing
tools similar to (but not the same as) the tools in the Editable Mesh base object.

Because an Edit Mesh modifier effectively creates a copy of the entire object and then makes a
mesh out of it, having multiple Edit Mesh modifiers on an object will eat up memory and slow
performance on the model. For this reason it’s a good idea to periodically collapse your stack rather
than accumulating a mass of Edit Mesh operations.

Edit Mesh functions
You should be familiar with all of the basic tools for Mesh editing in Max . If you are not, review the
Max documentation (starting on p. 640 in volume I of the Max R3 manuals or page 12-1 of the Max
R2 User guide) before proceeding.

Here are some notes to help you use Max’s common mesh editing tools in the Half-Life model-
building process. All of these tools are found in the Modify panel when you have an editable mesh
object selected for editing.

Collapse and Target Weld
These are two alternate ways of reducing the number of vertices.

The Collapse button will combine any number of selected vertices into one vertex. The new vertex
will be located at the centroid of all the selected vertices.. The collapse button also works on faces
and edges – it operates on all of the vertices in the selected face(s) or edge(s). When you collapse
vertices or faces all the edges connected to the vertices or faces will be connected to the new,
collapsed vertex. Collapse is particularly useful for simplifying meshes, particularly because it allows
you to quickly delete large numbers of vertices or faces without breaking the continuity of your
mesh.

The Target Weld button is important for more detail-oriented vertex reduction. When target weld is
activated you can essentially force one or more vertices to merge with a “target” vertex at the
target’s location. Target weld is particularly useful for removing interior vertices from an area whose
contours you want to preserve. You can use target weld to clean up your mesh by simply dragging
unneeded vertices onto their
neighbors.

Weld Selected
The Weld Selected tool will
collapse selected vertices in a
manner similar to the collapse
tool. However rather than
collecting all of these vertices
into a single point, Weld
Selected will collapse only
meshes that fall within a
specified tolerance. This is useful
for stitching together vertices
which are close to each other,
either to eliminate features which
are too small to see or to
connect polygons which are
adjacent in space but don’t share
vertices.

A very common time-saving
tactic in modeling is to build half
of a symmetrical object and then
simply attach a mirrored copy of
the completed half to make the
whole model. Weld Selected is a
simple, fast way to automatically
join the mated edges along the
seam.

Extrude
In earlier versions of Max (r1.2
and r2) extruding is one of the
most common methods for
modelers using a “ground up”
modeling strategy. Since an
extruded face (or group of faces)
adds new faces along the depth

Issues with Max Mesh Objects
Every element in a Max Mesh object is stored in an indexed list. A
mesh will have a list of vertices, a list of edges, and a list of faces, a
list of materials, a list of texture coordinates, and a list of smoothing
groups. If any one of these elements is changed or deleted, all the
subsequent entries in the relevant list(s) must be renumbered to
accommodate the change.

Why do we care? For two reasons. First, older versions of Max (r1.0
through r2.5) are prone to errors when rebuilding the lists. So
deleting a single vertex may have the nasty side-effect of
randomizing the texture coordinates, smoothing groups, or material
ID’s of the entire object. Anything which causes the vertex or other
indices to be rebuilt can trigger this bug – common causes are vertex
deletions, vertex welds or collapses, slicing faces and so on.
Unfortunately there is no way to predict this problem before it occurs
(although it’s frequency does seem to have some relationship to the
number of Edit Mesh operations in your stack) – the only safeguard is
to use Max’s autosave to keep backup versions of your file so you
can revert back in case of problems. Sometimes deleting the
offending Edit Mesh operation will cure the problem but in older
versions, especially r1.2, this is not guaranteed.

The second troubling aspect to Max’s handling of Edit Mesh
information is that all the operations that make up an Edit Mesh
modifier in your stack are also stored by index. Therefore if you
change a mesh upstream from a particular Edit Mesh mod you will
change the contents of the index lists – but the edit mesh mod will
still be using the values from the old index. Effectively this means that
the results of the Edit Mesh are now random. Fortunately Max will
warn you before letting you open an Edit Mesh mod which might
cause this to happen. Be very careful before changing meshes
upstream in your stack!

The basic lesson of all this: don’t allow yourself to accumulate a large
stack of Edit Mesh operations. Collapse the stack whenever you’re
ready to lock in your mesh and prevent it from being corrupted

of the extrude, extrusion is an easy way to create a new section in the mesh with regular
subdivisions. To understand how, imagine extruding the top face of a cube: this would create a
rectangular solid with two vertical subdivisions, and each subsequent extrusion on the same face
would effectively stretch the solid and a new subdivision. With the advent of the Slice and Cut tools
(see below) is now often easier to simply draw the subdivisions you want instead of extruding them
out

Extruding a face with a depth value of 0 and then collapsing it is a fast way to create a vertex in the
middle of an existing face.

Note that Extruded faces by default do not smooth to the faces around them. If you want your
extruded area to smooth with the faces around it you’ll have to apply the appropriate smoothing
groups yourself.

Slice and Cut
The Slice and Cut tools are very useful for putting vertices and edges where you need them. When
using these tools you’ll have to pay careful attention to the new edges that the cutting operations
generate. Max “Faces” are assemblies of triangles (supposedly co-planar triangles) arranged
origami-fashion to create the multi-sided face. The edges that separate the triangles inside the Max
face are usually invisible.

However the invisible edges do still control the way the mesh will look when it is deformed. There
are many potential circumstance where your vertex assignments are correct, and your mesh’s faces
seem to be the correct, and yet two similar faces will deform differently. This is because the
triangles making up those faces are arranged differently.

To correct this sort of problem, you may need to make those hidden edges visible to make sure that
the triangles deform the way you want them to. The Turn Edges tool enables you to change the
orientation of edges inside your faces.

Smoothing groups
The smoothing group system is Max’s
mechanism for identifying which faces in
a mesh are supposed to form part of a
continuous contour. Two faces which
belong to the same smoothing group and
share an edge will appear to be part of a
single, smooth surface; two adjacent
faces which belong to different smoothing groups will show a sharp division or crease. Your Half-
Life model will have the same shading as your Max model.

 Proper use of smoothing groups is critical for disguising the effects of low polygon counts; fairly
crude geometry can be made to seem much more organic by adroit placement of highlights and
smoothed edges. These illustrations show much smoothing groups help to clarify a model’s form:

Checking smooth groups
You can verify that your smoothing groups have been
preserved by looking at the model in the engine with
the console command “r_fullbright 1” or by choosing
the “smoothshaded” render option in Half-LifeMV.exe.

It is possible for a face to belong to multiple smoothing groups. If any of the smoothing groups
assigned to adjacent faces are the same, the faces will smooth.

You can modify smoothing groups with the appropriate buttons in an editable mesh or Edit Mesh
modifier, or by adding a Smooth modifier to your stack. This will apply to whatever selection you
pass to it from the previous item in the stack. Note that Smooth is not the same as the MeshSmooth
modifier, which will actually add vertices and faces to your geometry!

Two sided faces
The exporter supports only single-sided faces. To avoid surprises when exporting, make sure you
test your model with single-sided faces. If you need a two-sided polygon you’ll need to build two
copies of the geometry with opposite normals.

Vertex Colors
At present the SMD exporter does not support Max’s vertex color mechanism. If you are using
vertex colors for any reason the vertex color information won’t be exported to Half-Life.

Modifiers
You can use any of Max’s modifiers to help you model. Bear in mind, however, that the finished
product must be an editable mesh object (You can always convert to an editable mesh by
collapsing your stack or applying an Edit Mesh modifier. Any special properties conferred by a
modifier (such as the animated deformations in a Path Deform modifier) will be lost when the model
is exported; however the changes to the geometry visible in your viewport should be accurately
maintained in the exporter. To make sure that your Max scene is an accurate preview of your
eventual model, it is wisest to convert your model to an editable mesh before attaching it to a
skeleton or exporting it.

Here are some of the handiest modifier based tools for modeling:

FFD modifiers
The FFD or Free Form Deformation modifier is a useful way to shape an entire mesh at once. The
FFD is particularly useful for molding primitive shapes such as spheres and cubes into the building
blocks of an organic model. FFDs also duplicate many of the abilities of other Max modifiers such
as Taper and Twist with a more readily understandable and controllable interface.

FFD’s are very useful for creating forced perspectives on models which are unduly distorted by the
standard 90 degree F.O.V. on the Half-Life camera, such as weapon view models (see below, p.
37)

Mesh Smooth and Tessellate
If you do work from the ground up, you can add complexity to your mesh quickly by using the Mesh
Smooth and Tessellate modifiers. The helpfulness of Mesh Smooth modifiers is greatly increased
when you use them on vertex or face sub-objects (in Max r3 and later you’ll need to turn off the
“apply to whole object” checkbox to work with sub-objects).

Optimize
For those working down from more complex models, Max’s Optimize modifier has only limited utility
for simplifying and reducing the polygon count of your mesh. It does a fairly good job of eliminating
entirely redundant vertices and faces (for example, simplifying a plane with many unnecessary
subdivisions). However the optimize tool has many drawbacks for more serious attempts at polygon
reduction. It sometimes rebuilds the mesh incorrectly, resulting in garbled texture and materials
mappings. It usually leaves a confusing spider web of edges, many of which will need to be hand

tuned for good movement. Finally, the optimizer has an unfortunate tendency to destroy symmetries
when used on a whole model.

Generally Optimize is useful for making a first pass on a detailed model or geometry that you have
imported from another package. However you cannot count on it giving you a meaningful final
result. Hand optimization, using the vertex welding and collapsing tools, is still the most reliable
method of reducing your mesh.

Cap Holes
The Cap Holes modifier is often handy for filling in gaps created by mesh editing, or polygons that
failed to import correctly from DXF files. However Cap Holes has a tendency to misplace the
normals on faces – if you are working
with backface culling, the flipped faces
may not be visible at all if you are in a
shaded view.

Cap Holes does not always make
intelligent choices about the edges
inside the faces in creates – particularly
if you use Cap Holes in an area that
will deform when animating, be sure to
double check position of the edges.

Compound Objects
If you model with compound objects,
bear in mind that they will have to be
converted to editable meshes at some
point during your modeling process.

Lofts
Lofts are useful for a number of types
of modeling. One of their most useful
properties is their ability to generate
mapping coordinates on objects which could not easily be textured with standard planar or
cylindrical mappings. If part of your object is going to be a flexed tube which needs to have a texture
that follows its contours – the ribbed hose on a gas pump, for example – a loft object (converted to
an editable mesh, of course) is an excellent way to model the shape and to attach the texture
coordinates (for more on texture coordinates see UV Coordinates, p. 20 below)

ShapeMerges
The ShapeMerge compound object lets you project a spline shape onto a mesh. The spline will cut
edges into the mesh, creating new polygons and vertices. ShapeMerge is an excellent way to
produce complicated shapes for extruding. You can even adjust the number of vertices and edges
in the new shape by adjusting the “Steps” value in the originating spline shape – this number
represents the number of line segments between each of the spline’s control points when the spline
is projected onto the mesh.

However you need to pay attention to the underlying geometry when you project the shape. Since
the face onto which you are projecting will probably have hidden edges (see the discussion of
invisible edges above) you will probably have a few unnecessary vertices and edges. These can
easily be cleaned up using the target weld tool or other methods.

Dealing with Normals
The SMD export attempts to preserve the surface normal
information (i.e. the “facing”) of the geometry you create in Max
. Since the polygons in your final Half-Life model will be single-
sided, make sure you work in Max with the “Backface Culling”
option turned on to give you a correct preview. Changes you
make to the model with the Normal modifier or the analogous
tools in the editable mesh base object should be reflected in
your final model.

If you need a two-sided polygon in your model for some
reason, you’ll need to make a separate face for each side of
the polygon concerned. Make sure that you the two “sides” of
your polygon aren’t set to smooth with each other!

On rare occasions your model may be exported with all of its
normals reversed. If this happens you can correct the problem
in the QC file with the $reverse command (see the QC file
documentation for details).

Booleans
Boolean compound objects are a very powerful tool for making complex geometry with multiple
intersecting forms. Unfortunately the Boolean process will almost always produce a large number of
unnecessary faces and vertices. These will have to be cleaned up by hand. Target Welding (above,
p. 13) is a very useful method for eliminating the large number of unnecessary vertices which
always result from Boolean operations.

Other Tools
You can create your meshes using any of Max’s modeling tools – Nurbs surfaces, making a spline
cage mesh with the “Surface” mod, lofts, extrusions and so on. Likewise, you can modify your
models using a variety of Max modifiers such as bends, tapers, Free form deformations and so on.
The only limitation is that the end result of your Max modeling efforts will be exported as a simple
mesh; it will not retain any special properties conferred by a modifier (for example the “Flex”
modifier’s soft-body characteristics). For this reason you should consider collapsing your stack
periodically to be sure that your object will behave and export in a predictable fashion. Generally
speaking you always want to finish your mesh building process with a single editable mesh object in
your stack – this will make subsequent operations much faster and more reliable, and it will insure
that you have WYSIWYG connection between the mesh in your Max scenes and your Half-Life
model.

Texturing Basics

Once you have completed your mesh, you’ll want start adding textures to your model. Texturing a
model is usually an iterative process in which you paint a map, apply it to your model, and then
adjust both the map and its application to the model to fine tune your effect.

Texturing for the Half-Life engine uses only a subset of the tools for texturing in Max . Half-Life
models support only bitmap textures – Max’s procedural textures, such as the ”Checkers” or “Perlin
Noise” maps are not available in Half-Life. Half-Life models also have only a single mapping
channel for each face – where Max allows you to apply maps representing a model’s specularity,
transparency, and so on in Half-Life you can map only the model’s base color (corresponding to the
“diffuse” channel in a Max material.

Half-Life models also support only one set of texture coordinates, corresponding to Max’s Map
channel 1 (since the Half-Life models will never have more than one texture map on a particular
face, extra map channels aren’t necessary).

Before continuing, you should be familiar with these basic Max concepts:

• Materials

• Texture Maps

• Bitmap textures

• Gizmos

Setting Max Materials
To texture your model, you’ll first need to create a material in Max . Because Max will not allow a
single mesh object (remember that your final Half-Life model will consist of a mesh and a non-

rendering skeleton) to have more than one material applied to it, you’ll need to create a
Multi/SubObject material.

Multi/SubObject materials are essentially containers with some number of sub-materials, each of
which works like a normal Max material of the “Standard” type. Technically, each submaterial is a
complete Max material with controls for specularity, opacity, bump maps, etc. For our purposes,
however, each submaterial in your new Multi/SubObject is really just a container for a texture map,
which you will assign to the submaterial’s Diffuse channel.

You create a Multi/SubObject material by opening a Max material and using the “type” button (to the
right of the dropdown box with the Material’s name) to choose the Multi/Subobject type:

Figure 2: Creating a Multi/SubObject Material

1) select or create a material
and choose the Type
button in the Material
Editor.

2) Choose the
Multi/SubObject type
material type from the
Material/Map browser.

The resulting material will appear in the Material editor as a list of submaterials and a spinner for
setting how many submaterials to use. You should make the number of submaterials equal to the
number of textures of the textures you intend to apply to your model. Note that you will need to use
a Multi/SubObject material even if your model contains only one texture – it will simply be a
Multi/SubObject material with only one submaterial.

It’s a good practice to give each submaterial a unique name and also to set its diffuse channel to a
unique color; this will help you see more easily which faces use each material, and which material
corresponds to which texture.

Applying Material ID’s
Once you have applied the new Multi/SubObject
material to your mesh, you will need to specify
which faces use each submaterial. This is done
by selecting the faces in an Edit Mesh modifier
(or the editable mesh base object) and setting
their material ID numbers – these correspond to
the numbers of the submaterials in your
Multi/SubObject material.

You can also apply material ID’s by selecting
faces in a Mesh Select modifier and then applying
a Material modifier to them.

If you have set each submaterial in the
Multi/SubObject material to a unique color, the
end result will be a mesh with a patchwork of
colored faces – each color corresponding to one
of your intended texture maps. When you assign
your textures to the diffuse channel of the
submaterials, you’ll see the colored faces
replaced by your textures.

Painting your maps
You can generate your textures in any bitmap painting program such as Photoshop or Painter. Half-
Life model textures have only to meet these requirements:

• The texture is an 8-bit .BMP file

• Maximum size of the texture is no more than 1024 pixels in any direction.

• The texture must be stored a directory in your QC file’s $Cdtexture list (see p.45)

Any texture that meets these requirements is a valid Half-Life model texture. However there are
some important considerations relating to efficiency that you should keep in mind when painting
textures.

Palettes
Half-Life models use a 16-bit color space, even though each individual texture is only 8 bits. You
can use any combination of 8 bit textures on your model, even though they have different palettes.
This is a useful way to extend the color range of your model; you can put all of your flesh textures
(for example) into one map and your clothing textures into another, which will give each texture
much finer color resolution than combining all of these areas into one palette.

Previewing with Max Materials
To ensure that your Max scene matches the
way your model looks in the engine, make sure
that every sub-material applied to your mesh
has the following settings:

The Shader Type should be BLINN

Ambient: should be white (rgb 255 255 255)

Specular should be black (rgb 0 0 0)

Specular level, glossiness, and Soften should
all be 0

Opacity should be 100

 Wire, Face Map, 2-sided and Faceted should
all be off (unchecked)

Some hardware accelerator cards (notably older Voodoo based accelerators) impose a slight speed
penalty for converting each individual palette to the final 16-bit model. Thus a model containing two
maps that have identical palettes is somewhat faster than the same model using two maps with
different palettes.

Palette index numbers are only important if you are making multiplayer models with team colors
(see p. 40). Textures that do not support color remapping have no other limitation on their palettes.

Texture Sizes
As noted above, most hardware accelerators prefer textures whose pixel dimensions are powers of
two in both dimensions (see p. 6).

Number of maps
 All other things being equal a smaller number of maps is faster than the same number of pixels
taken from several smaller maps (i.e. one 128 x 128 texture is faster than four 64 x 64 textures).

For all of these reasons it’s common to combine textures from different parts of the model in a
single map (e.g., a map with the face and hands and another with both the front and back of the
body). You should plan your use of texture maps with all of these considerations in mind.

Applying textures
You are now ready to apply your textures to the model. Go through the list of submaterials in your
Multi/SubObject material and assign the appropriate bitmaps to the diffuse channel of the
submaterials.

When assigning bitmaps, do not use the wrapping controls in the “coordinates” rollout. None of the
placement, tiling, or color adjustment controls in the Material Editor bitmap window are
recognized by the exporter. The only way to control texture placement is by manipulating the
UVW coordinates on the mesh with a UVW Map or UVW Unwrap modifier. If you need to adjust the
colors or contrast ratio of your bitmap you will have to do it in your paint program or by using the QC
file’s $gamma command (see p. 42). Do not use the color adjustment controls in the bitmap rollout.
The bitmaps rollout should be used only to specify the bitmap file.

UV mapping
Max’s basic mechanism for sticking textures to models is the UVW Map modifier. UVW Map gives
you a moveable, re-sizeable gizmo with which you can interactively attach your texture to a model.
The SMD exporter supports only bitmaps applied with UV maps; other types of mapping, such as
environment mapping, or Max’s “From World XYZ” and so on are not supported by the exporter and
will produce unpredictable results if used.

How UVW maps work
The UVW Map gizmo represents your texture as if it were an object in the scene. The texture is
projected through the “surface” of the gizmo as if it were a slide. Unlike a real slide, however, the
projection is non-directional – it passes both ways through the gizmo, perpendicular to the surface.
In a simple planar projection, the rectangular gizmo represents the texture – its four sides
correspond to the four sides of the texture. You can imagine a cylindrical projection as a plane with
its two sides curved around to meet each other. A spherical projection works like a cylindrical
projection whose top and bottom edges have been tapered down to zero length, while its
circumference at the center is unchanged.

 In all types of projection, the UVW map modifier will assign two coordinates to each vertex in the
selected regions of your mesh, representing the relationship between the vertex and the texture.
The width and height of the texture are represented by values between 0 and 1; thus the coordinate

(0,0) would represent the top left corner of a texture while (1,1) would indicate the lower right corner
and (.5, .5) would be the center. These coordinates are called U (width) and V (height), to
distinguish them from X, Y, and Z.. U or V coordinates outside the range of 0 – 1 represent repeats
of the same texture: UV (1.2,1.2) is the same as UV (.2,.2).

UV coordinates are the only way in which the exporter and StudioMdl know how to attach a texture
to a mesh. This is why the repeat and tile values in Max’s bitmap texture window are ignored. Since
UV coordinates are only a function of vertices, all textures assignments must begin and end at
vertices – you cannot make a texture projection stop in between vertices.

Since UV coordinates are relative -- UV (.5,.5) is always the center of a map, regardless of the
map’s pixel dimensions – it is possible to change the resolution of your maps after establishing a
projection without changing the mapping; you can recompile a Half-Life model from SMDs without
retexturing in Max .

Working with UVW Map
You should try to minimize the number of
places in your model where the texture is
projected onto the mesh at an oblique angle.
This results in stretched pixels and an
unpleasant smearing effect. Try to avoid
projections that are close to parallel to the
models surface – these produce the most
extreme smearing. You can disguise
unavoidable smears by lowering the contrast in
affected areas of the texture – in a murky part
of the texture the stretched pixels are much
less offensive.

Clever use of UV mapping can help you save
texture memory and time. For example, if you
map a character’s boots with a planar
projection from the side, you can texture both
feet at once with the same pixels, whereas
trying to use one projection from the front would
use a larger texture and waste the pixels in
between the feet. By scaling and rotating the
mapping gizmo you can mirror or skew textures
to achieve – or avoid – symmetry. Unimportant
areas of the model – such as the soles of the
shoes – can be textured with small portions of
re-used texture (a small area of a belt or a
jacket often makes an unobtrusive sole when
blown up larger)

Using multiple UVW Map modifiers.
Most models will require several UVW Map
modifiers to establish all of your texturing
coordinates. In a simple example, you might select the faces which make up your character’s head
and apply a Cylindrical UVW map to it. You can then make a new selection with a “Mesh Select” or
“Edit Mesh” modifier and then add a new UVW map modifier to establish a second mapping for the
torso, then another for the legs, and so on.

New UVW mappings will replace older ones where the selections overlap. The latest map always
takes precedence.

Repeating Textures
You may be familiar with systems that use
repeating or tiling textures. The SMD exporter
does not support the tiling options in the Bitmap
material window. If you want to make a repeating
texture, you have three options.

If you are only interested in the look of the texture,
and don’t particularly need the extra efficiency of
re-using your texture pixels, the simplest method
is simply to include the repeats in your bitmap.

You can generate repeats by using UV
coordinates outside the range 0-1, either using the
Tile spinners in the UVW Map modifier rollout or
by hand editing UV values in UVW Unwrap. If you
use this method StudioMdl will automatically alter
your texture to include the repeats; this is
effectively the same as option (1). Your paint
program probably uses a more sophisticated
texture filtering method than StudioMDL, however,
so consider fine-tuning the UV coordinates and
painting the repeats into the texture yourself.

The most efficient option is to apply a number of
individual UVWmaps, each of which constitutes a
single repeat. If you have difficulty getting an exact
repeat, UWVunwrap is an excellent way to tweak
your mappings. The only limitation in this method
is that each repeat must begin and end on discreet
faces – you cannot end a repeat in the middle of a
face, since only vertices can hold UV coordinates.

UVW unwrap
An excellent new tool for inspecting the UVW coordinates of your model is the “UVW Unwrap”
modifier. This modifier is available in Max r2.5 and higher.

UVW Unwrap displays window showing your mesh in UV space. The Unwrap window corresponds
to your texture map. You can choose to show your bitmap as a backdrop to make the relationship
between model and map even clearer. The position of each face and vertex in the unwrap window
corresponds to its UV coordinates. You can adjust the UV mapping of a vertex by moving it in the
unwrap window (UVW Unwrap provides tools analogous to the standard move, rotate and scale
tools for adjusting these vertex positions). You can use this feature to fine-tune the relation between
the model and the texture – for example, by
dragging the vertices for your character’s nose to
be exactly half-way between the eyes in your
map or by making sure that a map edge’s
alignment to geometry is pixel-accurate.

If you’re puzzled as to how to texture faces with
cylindrical or spherical maps, UVW Unwrap is an
excellent way to see how the mesh relates to the
texture

Other texture mapping methods
Many Max objects offer you the ability to generate
mapping coordinates when you create them.
Since the coordinates are built with the objects,
Max can assign mappings intelligently based on
the objects’ shapes, instead of forcing them into a
generic projection plane, cylinder, or sphere. If
you want a texture which visibly follows the
contour of your surface (a checkered tablecloth
draped over a table, for example), see if you can
build your mesh using a tool that offers a built-in
mapping option. If you create an object with the
“generate mapping coordinates” option enabled,
the object’s texture coordinates will be retained
when you convert it to an editable mesh and/or
attach it to another mesh. You will have to
combine all such objects into editable meshes
before exporting them.

You can always erase mapping coordinates by
adding a new UVW Map modifier.

If you use 3d party plug-in texturing tools beyond
UVW Map and UVWunwrap you may not get
predictable results. If your tool actually resets the texture coordinates of the mesh, it will export
properly. The easiest way to assure yourself that your texturing tools will export correctly is to add a
UVW map modifier to the model to check your results. An example of a plug-in which correctly
updates UV mappings and will export properly is “Texturizer” from Sven Technologies Inc.
Texturizer was used in the production of a number of the original Half-Life models (see

Easy Texture Alignment
Here’s a useful trick for getting perfect
alignment between your textures and your
models.

Rotate your viewport to display the part of the
model you want to texture. Select the faces
you want to texture. Apply a UVW Map
modifier of the planar type.

Align the UVW Map gizmo to the viewport
using the “align to viewport” button. The “Fit”
button will scale the gizmo to the dimensions
of the face(s) you’re texturing.

Use the windows ALT + Print Screen
command to take a screenshot of the
viewport.

Open your paint program and paste the
screenshot into a new window. Crop the
window to the size of the UVWMap gizmo in
the screenshot.

You can now paint over the screenshot using
it as a guide to registering the new texture with
your model. If you need to resize to a powers-
of-two resolution or square shape, you can do
it after you have completed the texture. As
long as you don’t change the position or scale
of the map gizmo, the texture and the model
should be perfectly aligned.

Working with Half-Life Content from the Half-Life SDK, p. 59.).

Creating a skeleton

Overview
One of Half-Life’s key features is its skeletal animation system. As we’ve noted above, Half-Life
stores a models animations by recording the movement and rotation of “bones” – entities which
represent the supporting structure of the mesh. The most obvious illustration is a humanoid figure,
where the “skeleton” corresponds pretty closely to an actual skeleton – a “bone” for the shoulder, a
bone for the upper arm, a bone for the forearm, and so on.

There are three great advantages to the skeletal system, as opposed to many other systems which
store each frame of animation as set of vertex positions. First, the skeletal system stores a lot less
data – instead of evaluating every vertex position on each frame, the system has to store only the
positions of a much smaller number of bones. Moreover the combination of position and rotation
makes for easily interpolated values which can be played back at any framerate – the in-between
frames in a skeletal animation will be correct, where vertex animations (which simulate rotation by
moving vertices along curved paths) may interpolate strangely at framerates other than the one for
which they were designed. Finally, skeletal animations can pass data to the engine about the
position and orientation of things like sprites, hit-detection boxes, and so on.

The major drawback to the skeletal animation system as it is implemented in Half-Life is that each
vertex is rigidly attached to one, and only one bone. Stretching and flexing can occur only on faces
which have vertexes attached to different bones (for example, in the area of a knee where some
vertices will be attached to the thigh and others to the calf). This means that some kinds of
deformation, such as breathing, can be very hard to simulate with a skeletal system. The rigidity of
the vertex attachments also means that in areas where very marked changes in position and
rotation can occur, such as the shoulder, an unattractive twisting or folding effect can be seen.
Good planning and repeated testing are the best ways to minimize this problem.

Almost all HL models will need a skeleton. Very simple models that do not need to change their
shapes (such as a box of ammunition, a crowbar, or a chair) can be exported and animated directly
without skeletons. If you need to control the movement of any individual vertex relative to the rest of
the model, you will need a skeleton.

What is a bone?
In general terms, almost any Max object can be a bone for the Half-Life animation system. Max
supplies an object type called “bones,” which can be used in the skeleton of a Half-Life model, but
Max bones are only one of the many kinds of objects which can be used as “bones” for our
purposes. Almost any objects – dummies, grids, spline shapes, even lights or cameras can be part
of a Half-Life skeleton, so long as they are linked together in a hierarchy Editable spline objects can
be particularly useful because your animators can give them meaningful shapes – such a
directional arrow – to make them easier to work with. Max’s bones objects, by contrast, don’t
communicate directional information very well. Of course, cameras, lights and other special objects
will not export any properties but their positions and rotations. However the positions and rotations
can be animated and vertices can be assigned to them just like any other object.

It’s also worth noting that almost any method of moving and rotating the bones in your skeleton will
be supported by the SMD exporter. Any Max animation controller type that evaluates properly in
your scene should produce proper animation data when exported.

Building a Skeleton
You create a skeleton by placing bones into your scene and linking them together to form a single
hierarchy. The position of the bones’ pivots will establish the center of rotation for the various parts
of your model, i.e. the leg will rotate around the pivot of the hip, the arm around the shoulder, and
so forth. Only the position and rotation of the joints are truly important in building your skeleton – the
shape, scale, and other properties of the bone (for example fact that one bone is a Max Dummy
object and another a Max Bone System object) are unimportant. Because only the position and
rotation of bones are reported bones should not be scaled once they have been attached to a
mesh. If you use scales in the construction of you skeleton you will have problems if the scale
values change for any reason. For this reason it is best to avoid the scale tool altogether and create
your skeleton with translation and rotation tools alone.

Some tools, such as the Bone System tool, create a set of objects already linked into a hierarchy. It
is perfectly acceptable to use Max’s link tool to join these groupings into larger assemblies. Do not
use Max’s Group tool. Group information is not exported and the results can be unpredictable. If
you’re used to programs such as Alias or SoftImage, where “grouping” creates a hierarchical
linkage this may be confusing; however it is safest to avoid Max’s group tool completely when
modeling for Half-Life – use only the Link tool to create your hierarchies.

Remember that the skeleton cannot change between the reference SMD and the animation SMDs.
You’ll need to think about all of the motions you intend to create before you finalize your skeleton ---
you cannot add, delete, re-order or re-name bones in an animation SMD. If you make changes in
your reference skeleton you’ll need to make the same changes to any completed animation SMDs
as well.

For the sake of neatness, it’s a good idea to make sure that your mesh object is linked to the root of
your skeleton. Physique will offer to make this link for you automatically (see Using , p. 26).

Terminal objects
If you are planning on building a model with either the Physique modifier or the Skin modifier as
your tool for attaching vertices to bones, you will need to add one extra object after the last joint of
each limb of your skeleton. The vertex assignment tools need a “parent” and a “child” object to
make a suitable attachment for the vertices. Don’t bother animating any of these terminal objects –
the movement of the dependent object is ignored (since it has not children, no vertices can be
assigned to it). Max Dummies or even Max Point objects make good terminal objects, since they
can be easily hidden or ignored while working.

Local orientations
When you create an object to be part of your skeleton you should be aware of its orientation. Bone
controllers and attachment points are specified in terms of local orientations and can be extremely
difficult to work with if those orientations aren’t clear. Many animation methods, such as the
EulerXYZ controllers, expressions, and IK chains, need to know which way an object is facing so
that local rotations or movements can be calculated. You might want an elbow joint, for example, to
bend only along one axis and the elbow object’s orientation in order to restrict the unwanted
rotations.

Generally Max creates objects so that their local Z axis points out of the viewport in which they are
created; if you want your objects to have local axes which are the same as the world’s X,Y, and Z
axes you should create the objects in the top viewport. You may want to build different portions of
the skeleton in different windows to establish your desired local orientations. Particularly if you are
working with a system of Max bone objects it can be difficult to set up consistent orientations any
other way.

To check the local orientation of an existing bone, simply select it and set the active coordinate
system dropdown box (to the right of the Move, Rotate and Scale tools) to “local”. You can use the
pivot in the hierarchy panel to change the local axes of the pivots when building the skeleton,
however it’s not advisable to make any changes to the local axes after the skeleton is complete.

Link length
The Physique modifier will not recognize bone links between objects that are exactly in the same
place, or below a pair of such collocated objects. If you need to bones to occupy the same space --
say you wish to have two different controllers to animate different components of an object’s
rotation -- you will have to offset them by a very small distance (around .001 in world units seems to
be enough)

Character Studio Bipeds
The Biped plug-in portion of Character Studio is an excellent way to start a skeleton for humanoid
character. In addition to being a ready made template of a standard human skeletal structure the
Biped offers a much more stable and reliable IK solution than most Max bone systems. Moreover
the biped can be animated with inverse and forward kinematics at the same time: a very useful
capability. Bipeds can also be used for non-human characters – see the examples in the Character
Studio documentation for some good examples.

You can extend the usefulness of Bipeds by attaching other bone objects to them. You can add a
second set of arms, wings, or other appendages to a biped simply by using Max’s Link tool.

Biped objects are the only exception to the rule about not using the scale tool to build or edit
skeletons – when editing a biped in Figure Mode (see the character studio docs for more detail) it is
acceptable to use the scale tools. The overall size of the biped should be scaled using the “height”
parameter in the Biped Structure rollout. Using the scale tools to distort and reshape the Biped can
help you in working with non-human, non-bipedal creatures as well. If you browse through the Half-
Life content in the SDK you’ll notice that a number of non-humanoid creatures were created using
Bipeds.

Updating and Editing Skeletons
If you find it necessary to make any changes to the your skeletal structure during the course of your
project, you will have to update all of the animations which reference that skeleton. Every animation
SMD will be checked against the skeleton in the reference SMD and any differences between the
skeleton – adding, deleting or re-ordering or
renaming bones – will cause prevent StudioMdl
from correctly compiling the model.

If you need to animate bones which form a
hierarchy for the purposes of exporting but need to
behave like separate unrelated objects, you can
force your bones not to inherit transformations or
rotations from their parents – in other words, they
will act as if they were not connected. In the “Link
info!” section of the Hierarchy panel there are
checkboxes that control your objects’ inheritance of
translations, rotations, and scales in each axis.
Turning inheritance off with these checkboxes will
make the objects behave as if they were
unattached, while preserving the hierarchical
relationship for organizational purposes.

Mismatched Skeletons
One common cause of failed compiles is
accidental changes to your scene’s hierarchy. If
you add an object to your scene – say a moving
dummy to help you time a motion in your
animation – the SMD exporter will export the
object along with your model. StudioMDL will
see the skeleton of your model from the
reference SMD and the skeleton from the
animation SMD don’t match and will abort the
compile. Invisible or oddly placed objects are the
most common cause of the skeleton mismatch
errors. Be sure to check for extra objects lying
around in your scene if StudioMdl won’t compile.

Attaching Meshes to the skeleton
Once your skeleton is complete, you’ll need to establish the relationship between the mesh and the
skeleton. This can be done in one of two ways: If the model is not intended to change shape it can
be linked directly to the skeleton with the link tool. If the vertices of the mesh are going to move, on
the other hand, you’ll need to apply a modifier to the mesh to specify how the vertices relate to the
bones.

Linking Meshes
Simple objects can be attached to the skeleton simply by linking them to the bone that controls their
movement.

Deformable Meshes
Perhaps the most time consuming part of the entire Half-Life modeling process is establishing the
connection between the vertices of your mesh and the bones that you will use to animate the
model. There are three ways to attach a mesh to a bone hierarchy, however before we look at each
method individually there are two useful rules to remember:

Make sure your vertices are attached rigidly. Some methods of attaching vertices offer the
option of using deformable or weighted attachments in which a vertex’s position is influenced by
more than one bone. Half-life, on the other hand, will allow a vertex to be attached to only one bone.
If you use non-rigid attachment methods your Max model will almost certainly not match the final
exported model if you use any non-rigid attachments.

Attach your model to the skeleton after it is done! It may be useful to test a partially completed
model for proper bending, etc. However it is wisest to attempt the final attachment only after you are
confident that the mesh is in a finalized state. Mesh edits which come after an attachment modifier
in the stack have unpredictable results. It is possible to adjust texture coordinates, material ID’s, and
smoothing groups after attachments. Anything which would change the topology of the mesh,
however -- adding, deleting or moving a vertex or face – will almost certainly fail to export as
expected.

Using Physique
All of the models that shipped with Half-Life and TFC used the CharacterStudio “physique” mod to
attach their meshes to their skeletons. Physique is the only method of vertex attachment supported
in Max versions 1 and 2. For more detail on how to apply and work with the Physique modifier, see
your Character Studio documentation.

First, assign the Physique modifier to your mesh. Make sure that you
are assigning it to the whole mesh, rather than a vertex or face sub-
selection. Be sure to check the “Link to root node” box so that your
mesh will be linked to the skeleton’s root. Press the “Attach to node
button” and choose the root of your skeleton when prompted. If you
are using a Biped skeleton object, the root node of the skeleton is the
diamond-shaped center-of-mass object.

You’ll observe that the skeleton now displays a series of orange lines
outlining the skeleton. If you some parts of your skeleton seems to be
missing, you may have picked the wrong node as the root or you may
have zero-length links (see Link Lengths above).

The basic methodology for assigning vertices to bones is

• Switch to the “Vertex” sub-object level.

The Attach to Node button in
the Physique modifier

• Activate the “Select” button and select the vertices you want to assign.

• Activate the “Assign to Link” button and click on the orange line representing the bone
link to which you want to attach the vertices.

You will repeat these steps until all of your vertices have been assigned to bones. Remember that
the vertices will move and rotate with the “top” of the bone – the joint on the link which is closer to
the root in the hierarchy – so if you wish vertices to move with a knee, for example, you click on the
link between the knee and the ankle.

Physique supports three kinds of
assignment, which are represented by
three colored crosses in the physique
rollout. When you select vertices, the
highlighted crosses act as filters – only
vertices of the highlighted types will be
selected. When you assign vertices, be
sure to highlight only the green (rigid)
crosses – as already noted the exporter
supports only rigid vertex assignments.

You can test your assignments by
repositioning your skeleton – the mesh
will deform according to your
assignments and you can easily spot
mis-assigned vertices. You can assign

vertices with your skeleton in any position – if you need to check your position against the
skeleton’s original pose with the “Initial Skeletal Pose” checkbox.

For best results you should make sure that the Physique modifier is the last modifier in your stack.
You can apply UV mapping, change smoothing groups, and change material ID’s after the Physique
if necessary, but any mesh editing operations that take place after the Physique may be ignored by
the exporter.

By default the orange link lines which
Character Studio uses to represent the
skeleton are spline curves – Character Studio
uses this curvature to make softer
deformations. This can interfere with the
accuracy of your previews because this
softening is ignored by the exporter. If your
compiled model does not seem to match well
with the Max model as you move and pose it,
you can straighten out the skeletal curves. To
adjust the curvature of a link, go to the “Link”
sub-object level, select the link(s) you wish to
change, and set the Tension value to 0.

Using Skin
With version 3.0 Max introduced the Skin
modifier, which duplicates much of the
functionality of Physique but which does not
require Character Studio to operate. The
SMD export script included with this SDK
supports the Skin modifier as an alternative

Changing a mesh
Physique vertex assignments are a function of
the topology of the mesh. If you make any
changes to the mesh upstream in the stack from
your physique modifier, your vertex assignments
will be lost or confused.

If you discover that you will have to change your
mesh after you have already assigned vertices,
you may be able to use Physique’s “Lock
Vertices” feature (available in the Vertex sub-
object level) to preserve your assignments.
Before making changes to the mesh select all of
the assigned vertices and select the “Lock
vertices” button. When you make upstream
changes, new or moved vertices will copy the
assignments of the original locked vertices. This
can save a lot of time. It’s still always a good
idea to complete your mesh before attaching it
to a skeleton.

Assigning Vertices With Envelopes
Physique allows you to assign vertices in large
numbers quickly with “envelopes”. If you’re familiar
with the envelope method, you can use it as a quick
first pass at vertex assignment. If you do use
envelopes, make sure that you use the “Rigid”
envelopes to make your assignments. You’ll have to
do some vertex-level assignments to resolve areas
where the envelopes overlap. Vertices assigned with
envelopes should work in the engine identically to
vertices assigned by hand.

For more information about using envelopes see the
Character Studio documentation.

method of vertex assignment for modelers without access to Character Studio. For more
information about Skin see the documentation on page 842 of the 3D Studio Max manual vol. I.

Using Skin is very similar to using Physique. Before applying the Skin modifier you should link
the mesh object to the root of the skeleton with the link tool. Then hit the “Add bone” button and
use the resulting dialog box to add all of the bones in your skeleton. You’ll notice that the root
bone will be missing from the list – in contrast to Physique, Skin remembers vertex assignments
by the “bottom” of the link – i.e., when you make an assignment to the knee bone you’re working
with the link from the hip to the knee rather than the knee to the ankle.

To assign vertices with Skin, follow these steps.

• Choose the “Envelope” sub-object level.

• Select the vertices you want to assign. They’ll be highlighted with white squares.

• Use the "Reset Selected Vertices" button to clear their assignments (this button is
located at the very bottom of the rollout – you’ll have to scroll down to find it).

• Select the bone you want to assign the vertices to from the list in the “Parameters”
rollout (bearing in mind the rule about how bones names are stored, above).

• Type a weight of 1.0 into the "abs weight" box to assign the vertices to the bone

You can check vertex assignments by clicking on the bone names in the parameter rollouts; each
selection will highlight the vertices attached to the link. If the vertices highlight in a color other than
red, they may be assigned to more than one bone and should be checked. Reassign problematic
vertices using the procedure above.

Skin supports vertex assignment with envelopes similar to the system used by Physique, however it
is not recommended for use with the exporter.

Like Physique, Skin should be the last modifier in your stack – you can make mapping or material
changes after a Skin but this is not recommended. There is no good way to preserve vertex
assignments in a Skin modifier if changes are made to geometry
upstream.

The export script that works with the Skin modifier will attempt to
correct vertices which are assigned to multiple

Using Linked Xform
Max r2.5 and r3 offer another method of attaching vertices to a
skeleton. Max’s Linked Xform modifier takes the selection passed
to it by the stack and attaches the selected vertices to a “control
object” which works like a Half-life bone. The SDK includes a Max
Script exporter script which allows users without Character Studio
to make vertex assignments.

Because each Linked Xform only handles a single selection -
bone relationship, you’ll need to create a series of selections
followed by Linked Xforms to connect your entire mesh. You
should use the Mesh Select modifier to make your selections.
When you’ve completed your assignments your stack should look
something like the image at right.

Modifier stack of a model
using Linked Xform to
assign vertices.

If you select the same vertex in more than one of your Mesh Select modifiers, the later selections
will override the earlier.

Although it is possible to add Edit Mesh or other geometry modifiers after the series of Mesh Select
/ Linked Xform pairs, it is not recommended because it will result in inaccurate previews in Max .
For best results try to have the selection / link series of modifiers as the last items in the stack.

Animation Basics

Animation is probably the most complex and time consuming part of creating Half-Life characters.
Fortunately the HL exporter supports almost all of 3DStudio Max ’ animation tools, so experienced
animators should have few problems in adapting their work for Half-Life. If you have not done much
character animation before beginning your Half-Life project, it’s a very good idea to look at some of
the tutorials and guidebooks available in print and on the web. The Character Studio
documentation and the 3Dstudio tutorials are good places to start. Useful books include:

Digital Character Animation, by George Maestri (New Riders, 1996)

Character Animation in Depth, by Doug Kelly (Coriolis, 1998)

3D Creature Workshop, by Bill Fleming (Charles River Media, 1998)

There are also several good books available on traditional animation which can be very useful when
thinking about how to represent emotion or movement in a character.

Before continuing on you should make sure you are familiar with the following basic animation
concepts and Max features:

• Keyframes

• Animation controllers

• Walk and run cycles

• Interpolation or “tweening”

• Inverse Kinematics

Animation system overview
Every animation in Half-Life draws on two sources of data. The basic keyframe data is supplied by
the animation SMDs exported from Max . Animation data with no physical component, such as the
playback framerate of an animation, or whether a particular animation can be looped, is specified in
the QC file. Together the keyframes and other data make up an animation sequence, which is
created with a $sequence command in the QC.

The animation system and the AI only know about sequences called in the QC file. An animation
SMD which isn’t called in a $sequence in the QC file won’t be included in the model even if it is
properly exported from Max . On the other hand, you can call the same animation several times at
different framerates, for example, or with different sound effects and the AI will treat each instance
as an independent animations (a simple creature might have a “walk” and a “run” which were used
the same keyframes played back at different speeds, for example).

Exporting an animation
Exporting an animation is as simple as choosing the SMD exporter from Max’s File > Export menu.
The SMD file you create should be saved in the directory indicated by your QC file’s $cd statement
(see QC file reference, p. 42). Make sure to save the animation as an “animation .smd” rather than
a “reference.smd.” Use the SMD export plug-in to export your animation SMDs regardless of which
method you used to assign your vertices.

Adding a $sequence command to the QC file
$sequence has a number of parameters which are detailed in the QC file reference. Most
animations, however use only a handful of $sequence’s options.

The simplest possible $sequence command would look something like this:

$sequence “sequence name” “smd file”

 $sequence is the command which identifies an animation.

 “Sequence name” is a text name for the sequence; when the game reports
information back to you – for example, if you are viewing animations in a cycler –
this is the name that will be displayed. It’s a good idea to enclose this name in
quotes.

 “Smd file” is the name of the smd file which supplies the keyframes for this
sequence (without the .smd suffix). It’s a good idea to enclose this in quotes as
well.

Since no other information, this sequence has no special options. It will play back at 15 fps (the
default framerate) and will not loop.

Here is a $sequence line with more options:

$sequence “sequence name” “smd file” fps 30 LX loop ACT_WALK 1

 The $sequence, sequence name, and smd file parameters are the same as in the
first example.

 Fps 30 specifies the framerate for this sequence.

 LX means that this animation uses “motion extraction” – meaning the movement
portion of the animation will be passed on to the AI or the player movement to be
evaluated. LX allows you to set up walk or run cycles which in which the poses
repeat but the movement is varied by the AI or player control.

 Loop identifies this as an animation that can be looped seamlessly -- for example,
a walk cycle. The pose in a loop animation should be the same in the first and last
frame (in point of fact you’re saving 1 frame more than a complete loop).
Animations with movement extraction turned on don’t have to end the loop in the
same place – only the same pose.

 ACT_WALK is an action tag, a label which identifies this animation to the AI as a
“walk” animation. The uses of the action tag mechanism are described below.

Remember to include a line for every animation in your model. Only animations listed in a
$sequence command will be included in your compiled model.

Animating your model
Almost any animation you can create in Max can be exported to a Half-Life model. You can use any
of Max’s animation tools, such as inverse kinematics, noise controllers, expressions, or Max Scripts
to generate your animation keyframes. Anything which produces data visible in the Max trackview
(either as keyframes or as a controller) can be exported properly. Note that a script which generated
an animation on the fly but did not create keyframes or reside in a “script controller” node in the
track view would not be exported correctly.

Only data relating to the skeleton will be exported, so any animated modifiers or special effects
(such as the “flex” modifier) will be ignored by the exporter and will not appear in your Half-Life
model. As already noted, the exporter will save only rotation and movement data – scales will be
ignored.

Time
Unlike Max, the exporter does not care what real-
world time unit a frame is supposed to represent.
The exporter ignores all of Max’s time
configuration options except for the animation
range (the start and end frames). The speed at
which the frames will be played back in Half-Life
is set by the fps parameter in the QC file’s
$sequence command. The frames-per-second
setting in the Max file is important only for helping
you preview your animations properly.

It is not necessary for animations to start on
frame 0 in Max . However animations with
negative frame numbers (i.e., frame –10 to 10)
can be problematic and should be avoided. You
can tell $sequence to use only part of an
animation with the frames [startframe]
[endframe] parameter. Thus

$sequence “middle” “BaseAnimation”
fps 30 frames 10 20

would use only frames 10 through 20 (inclusive)
of the animation in the file “Base Animation.smd”

While it is possible to use the fps command to
stretch or shrink an animation, extreme changes
– playing a 30 fps animation back at 2 fps, for
example – will often produce artifacts. The
artifacts are most pronounced when slowing
animations down by large factors. If you need to
make an animation much longer (say changing a
one second animation to one minute) you might
be better off using Max’s rescale time ability to
create a larger number of keyframes.

Interpolation
When your animation is played back in the Half-Life engine, the animation system will attempt to
display it correctly regardless of fluctuations in the framerate of the game. This means that whether

Max Keys and SMD file keys
Max supports a number of controller types and many
of these include special parameters with their
keyframes which control the rate of change between
the keys. It is possible to get a variety of subtle
effects using such features as ease-in and ease-out
values, key curves, and so on. This give animators
greater control with fewer keyframes cluttering up
the track view.

The exporter will create one keyframe for every
frame in the animation – regardless of whether the
model’s pose at that frame was set as a keyframe or
derived from some combination of ease values and
so on. If the Max animation and the SMD animation
were played back at the same frame rate as each
other they would appear identical.

If the Max animation were played back at a much
lower framerate, the same parametric controls that
ease the movement between keyframes would
generate a larger number of in-between poses and
the animation’s smoothness would be preserved –
the relationship between the keys is a basically a
mathematical function which can be scaled to cover
an arbitrary number of in-between frames.

The animation in the engine, however, is only a
series of keyframes with no control over
interpolation. If the keyframes are used cover a
larger stretch of time, the engine will generate new
keys with a simple linear interpolation.

A safe rule of thumb is to generate more keys in
Max if you need to slow an animation down to 50 %
or more of its original speed.

your animation plays back on a machine which can only produce half the framerate for which the
animation was intended – or twice that framerate – the animation will be played back so that its
duration in real-world time is the same. Faster or slower computers will change the smoothness of
the playback, but the integrity of the motion will be preserved as well as possible.

You may experience some interpolation artifacts if there is a very wide variation between the speed
at which your animation was created and the final playback speed. If, for example, you created an
animation at 10 fps and played it back on a machine capable of 50 fps, you might see some
differences between the animation as played in Max and the animation in the engine. Generally
animating with a 30 fps framerate will minimize this problem.

Certain kinds of motion are also very vulnerable to frame-rate related strobing. For example a 3-
bladed propeller might look good spinning at 30 fps, but may appear to spin backwards at
considerably higher or lower framerates. You may find it useful to have such objects spinning at
lower speeds, which lessens the likelihood of this occurring.

Basic Animation Tasks
Here are guidelines for some of the more common types of animation.

Movement Animations
Movement animations – typically walking or running but also swimming and flying – are identified to
the AI by action tags (see Animations in the game engine, P. 35). Animations for player –
characters in multiplayer are not controlled by the AI and involve some special issues; see

The AI will use the speed of movement in your animation to navigate the character through the
world. To change the character’s speed, simply change the animation – no change to the AI code is
required. Remember that 1 Max unit equals one inch in the game world when planning your
movement animations.

 Movement animations will always be loops so
they can be repeated as necessary; animators
generally refer to them as “run cycles”, “walk
cycles” and so forth. Unlike some systems,
Half-Life does not require you to animate cycles
in place – you animate the walk or run with the
character moving through space. The motion
through space is what tells the system how fast
your character will move in the game. By
convention “forward” is moving down the Y
axis. enabling you to be certain that the
character’s feet stick properly to the ground.

Movement animations use the LX motion
extraction parameter as part of their
$sequence line. LX enables the engine to
keep track of the model’s position and prevents
the model from snapping back to its initial
position after each play-through of the cycle. If
you forget to add the LX tag to your sequence,
the model will continually pop back to its
starting point rather than navigating through the
world.

Previewing cycles in Max
Since you are adding an extra frame to the
end of your looping animations, your Max
animation previews will show a hitch as they
loop due to the extra frame. It is a good idea
to render your preview at the nominal length of
the cycle (i.e. without the extra frame).

If you’re having trouble debugging a walk
cycle because the character’s movement
through space makes it harder to see hitches,
you can temporarily attach a camera to the
root node of the character. Since the camera
will be carried along with the moving character
you can effectively view the cycle running in
place.

Character Studio users can use the In Place
Mode button in the Motion command panel to
view their cycles in place.

When building cycles, make certain your exported animation begins and ends with the same
pose (though not the same position in space, naturally). For example, if you want a 1 second walk
cycle at 30 fps, you will use 31 frames – 30 frames of animation plus a final repeat of the initial
pose. The extra frame provides the animation system the data necessary for proper interpolation --
it will not cause a hitch in the cycle when you play the animation back in the engine.

Action animations
AI controlled behaviors such as attacking, dying, or simply standing around idly are created by
simply tagging animations with the Action tag mechanism appropriate to the action. The details of
the action – the moment when an attack lands, or when a sound is to be played, even the frame on
which a dying character actually dies – are indicated by animation event parameters in the
$sequence command. For example the last line in the human grunt’s QC file,

$sequence throwgrenade "grenadethrow" fps 30 { event 7 46}
ACT_RANGE_ATTACK2 1

indicates that the grenade is spawned in the game (“event 7”) on frame 46. Individual characters
have unique events defined in their AI. There are also a series of generic events which any
character can access. A list of shared animation events is documented on page 49.

Action animations should not include a meaningful movement component unless you are prepared
to alter the AI.

When character’s AI finishes one state and moves to another, the system will blend between the
last frame of the old animation and the first frame of the new animation over a tenth of a second.
You should plan your action animations in ways that anticipate this – you’ll want to begin and end
your animations in poses that either match exactly or in poses where the tenth of a second blend
makes an acceptable transition. AI code can omit the tenth second delay in cases (such as the
recoil of a gun) where it is too slow.

Scripted Sequences
Half-life’s most powerful storytelling tool is the scripted sequence animation, which allows the
animator to create scenes of great complexity without requiring unusual AI or code. Scripted
sequences effectively suspend character AI while they are being played, allowing characters to
perform actions that would be impossible to them under ordinary circumstances. A simple scripted
sequence might involve nothing more than a character moving to a particular location and delivering
a speech or activating a button. A complex sequence, on the other hand, could involve several
characters interacting – one character carrying another, for example – as well as special effects,
sounds, an in-game events such as camera shakes, doors opening, and so on.

Scripted sequences are created in WorldCraft by placing scripted sequence nodes. The scripted
sequence node contains controls for specifying:

The monster type or particular character involved in the sequence -- you can set a sequence for any
available character of a given type, or only a particular one. You can also set a “search radius” –
how far the script will look for a monster to come play the sequence.

An “idle” animation for the target character to play before the sequence is triggered – this will allow
you to keep a character in an unusual position until required (the scientist hanging on to a
collapsed platform in Half-life’s subway station, fore example).

How the character will move to the location of the script -- characters can walk, run, or instantly
“pop” to the sequence location when the sequence is triggered, or they can play the sequence from
their own locations without moving.

The scripted animation. Any animation can be used in a scripted sequence, even an animation
which is also used as an action or motion animation. Scripted sequence animations do not have
any special action tags (they are called by name in the WorldCraft scripted sequence node).

When a scripted sequence is playing, all of the character’s ordinary behaviors are suspended. This
can be problematic if the player manages to interact with the sequence in some unforeseen way
(for example, by shooting the character playing the sequence). If you are developing a particularly
complex sequence, or one with interlocking animations for several characters, you’ll want to control
the environment in which the sequence takes place to minimize the possibility of interference.

Scripts can have associated special effects. Scripted sequences can contain animation events that
will fire WorldCraft triggers (allowing a scientist to open a door, for example, or causing a
func_breakable to explode at an appropriate moment). Sequences can also include audio or effects
cues, also included in animation events. Look at the list of events on page 49 for a sense of the
kinds of effects you can add to scripts.

If you need to synchronize multiple characters you will have to place a separate scripted sequence
node for each character. When you have completed animating your scenes, you will have save a
separate Max file and SMD for each character in the scene (having deleted all of the other
characters) before exporting the animations. If you attempt to export a scene with multiple
characters you’ll get a parent mismatch error from StudioMdl. You can fire all of the script nodes
with a single trigger, and the animations should play back with proper synchronization and spatial
relationships.

Since it is inconvenient to place multiple script node in the exact same sport, you can move the
nodes to different locations but keep the animations in the same place with $origin statements.

If you need characters to interact with the world, you can give them props by making the separate
“characters” out of the prop models and animating them separately. For example, late in Half-life the
player comes to a barricaded door guarded by a scientist with a gun. The gun model is actually a
separate monster_generic entity playing back a scripted sequence synchronized to the scientist’s
hand movements.

You can add simple scripted sequences with “empty” sequences or by calling ordinary AI
animations as scripts. You can make one character “chase” another by having the two characters
called to run to script nodes, for example. The scripted sequence mechanism is one of the most
powerful tools for making your game come alive, and you should think hard about how you can use
it to best advantage.

Player animations
Player animations – those controlled by a player rather than the AI – are complicated by a number
of factors. Unlike AI animations, there is no way to predict the sequence of actions a player will
take; the AI can force a monster to slow down before reversing course, for example, whereas a
player character can switch from a full-tilt forward run to a high-speed backpedal instantaneously.
Moreover the finesse with which player characters maneuver is highly influenced by the quality of
network connections – models controlled by high-ping players will generally take bigger steps (for a
single control input) than low ping players’ models. For all these reasons the animation system
handles multi-player animations in a different manner than AI controlled movement animations.

Gaits
Players, like other characters, can walk or run. The system will interactively adjust the speed of the
animation playback to allow for variations in speed, so a character animated to run at Half-life’s
default speed of 320 units per second will use the run animation, but a character moving at 240
units will play the same animation at ¾ speed. Below a certain threshold (set in code) the system
will switch to a walking gait (i.e., a new animation) and play that back at a similarly modulated rate.

Upper body motion
Current half-life multiplayer code uses controllers (see Controllers, p. 41) on the vertical rotation of
the player model’s spine to let the player look left and right while moving. When animating for
multiplayer you should keep the player’s pelvis steady so that the rotated spine will remain relatively
upright. Be sure to test your multiplayer animations with this in mind.

The positions of the player’s arms and head are independent of the original run/walk animations as
well. You create a single run and walk animation and then a series of single frame poses or short
animations for the different weapon holds, rather than requiring a complete set of walk, run, etc.
animations for each weapon. It also allows firing animations to have a cyclic length independent of
the length of the walk and run animations.

The weapon poses come in two versions, a “ready” or “aim” pose and a short “shooting” animation.
Each weapon pose is set up using a blend (see Animation blending, p. 50) that controls the vertical
orientation of the player’s upper body (the horizontal rotation is controlled by the spine controllers,
as noted). You’ll probably need to create two versions of each weapon pose – one for the
standing/walking/running posture and another for crouching. The shoot animations use event tags
to indicate at which frame the muzzle flashes are to be played. The muzzle flashes are attached to
the player’s p_weapon models as described in Attachment points for items, p. 38

Player animations are identified to the multiplayer server by index, rather than by name or action
tags. The server will use the animation index of the default player model to determine which
sequence and frame to play. If a multiplayer model has animations in a different order than the
default model, that model will display inappropriate animations (see Animations in the game engine,
below)

Animation system notes.
Animation length
There is a finite limit of 400 frames in a single animation sequence.

Loops
If you plan on making a looping animation, such as a run or walk cycle, you should be sure your
exported animation begins and ends with the same pose (if you want a 1 second walk cycle at 30
fps, you will use 31 frames). The extra frame provides the system the data necessary for proper
interpolation; however it will not cause a hitch in the cycle when you play the animation back in the
engine. This can be slightly confusing in Max because there will be one extra frame in your Max
previews – it is a good idea to render your preview at the nominal length of the cycle and then reset
the animation range to include the extra frame before exporting to the engine.

IK target objects
If you are using Max Bones systems to animate your character, you may want to use dummies or
other objects as targets for your IK chains. Remember that any target objects must also be present
in your reference file, or you will not be able to compile your model correctly. Consider including any
target objects in your skeleton by linking them to its root; if you need the target objects to move as if
they were unconnected, you can turn off their transformation inheritance (see p. 25)

Animations in the game engine
Once your animations have been exported and called in the QC file, your model is ready to be
compiled. But how does the engine know which animations to play, and when?

The engine has two different ways of identifying the animations in a model. Which system is used
depends on which function the model is performing. If the animation is going to be called by an AI –

for example in the case of a monster’s movement or fighting animations – it will be identified with an
action tag. Other parts of the engine, such as the multiplayer code, will identify the animation by its
place in the list of animations in the QC file. Finally map entities such as scripted sequences call
animations using the “sequence name” specified in the $sequence command.

AI animations
“Monster” models – i.e. any model controlled by an AI – use the action tag mechanism. Action tags
are added to a $sequence line in the QC file to tell the AI that a particular animation sequence
corresponds to a particular AI function – for example walking, shooting, or dying. The AI is only
aware of animations marked with action tags. Note that the action tag is not the same as the
sequence name – a sequence called “walk” that does not have an ACT_WALK tag will not be
recognized as a walk animation by the AI.

The AI will automatically use the speed and duration of tagged animations in its decision-making
process. Thus to change a monster’s movement speed, it is necessary only to change its
ACT_WALK animation – you could even simply change the framerate of the animation in the QC file.
The AI will navigate the character using the new speed without code changes.

It is possible for more than one sequence to have a particular action tag. A character with several
different idling animations might have a number of animations with ACT_IDLE tags, for example. If
there are multiple sequences with the same action tag, the AI will choose randomly between the
eligible sequences. You can weight that choice by adding a number to the action tag; for example if
you have two sequences:

$sequence “normal_walk” “normalwalk” fps 30 loop LX ACT_WALK 1

$sequence “silly_walk” “sillywalk” fps 30 loop LX ACT_WALK 2

the “silly walk” animation is twice as likely to be
called as the “normal walk”. The probability of
choosing the any particular animation is its action
tag number divided by the sum of all the numbers
for sequences with this tag.

Be sure your action tags have weighting numbers –
action tags without selection numbers can cause
StudioMdl to crash.

The ability to choose between animations randomly
is an enormously powerful tool – it lets animators
add many shades of nuance to a particular AI
behavior without any changes whatsoever to the
code.

Code-controlled animations
Animations not controlled by the AI system do not
use action tags to identify sequences. Instead they
are identified internally by their position in the list of
animations in the QC file. The first $sequence in the QC file would be animation 1, the second
animation 2, and so on. There is no explicit index or table – the numbers are simply a function of the
order in which $sequence commands are called in the QC.

This has very important consequences. The code which calls the animations knows nothing about
them except their place in the QC file – that is, it simply says “when X occurs play animation 5”. An

Multiplayer animations
When the server in a multiplayer game
updates the clients, it sends its animation
data to them as sequence indexes. The
server does not discriminate between
different player models. Therefore every
player model must have the same index
of animations as every other. For this
reason the Half-Life and TFC multiplayer
models call their animations from a
shared QC file to prevent the possibility of
a mismatch in animation indices. However
it is possible for the actual keyframe data
in different models to be different, as long
as their order is the same and the
animations have the same number of
frames and frame speed.

accidental reordering of the list in the QC may cause the code to call the wrong animations (indeed,
adding one line to the beginning of the $sequence list would change the index of every animation
in the model and cause all of them to be called incorrectly).

Weapon view models are one example of an entity that calls animations by their sequence index;
player models in multiplayer games are another. It is important in working with these types of
animations that animators and programmers work closely on these types of animations to avoid
confusion.

Calling animations by name
The name which each $sequence command includes is the way in which entities in game maps –
primarily scripted sequences – can call animations. A scripted sequence node in WorldCraft
includes a field in which you can specify animations for the script’s active and idle states. The script
will activate the appropriate animation when triggered. It’s a good idea to let your level designers
have an up-to-date copy of the QC files for your models, so that they can cut-and-paste sequence
names. There is no error detection when typing sequence names into WorldCraft. For more
information on scripted sequences, see p. 33).

Advanced Modeling and animation

Advanced Modeling
Viewmodels
Weapon viewmodels present a couple of unique challenges. They are generally lower in polygon
count and texture allowance than characters, but they are always visible to the player at a very
close range. To get the best results it is important to know a few tricks:

Setting up View models
To preview your model, set a 90 degree F.O.V. perspective camera at origin (0,0,0) facing along the
negative Y axis. This simulates pretty well the player’s camera view in the game. Build your model
using the camera view as a guide. There are subtle differences, however, between the cameras in
the Half-life software, GL, and D3D renderers, so it is not a good idea to assume you will get
absolutely identical results in the game. If you are optimizing your model by removing unseen
geometry, be sure to leave a little leeway around the bottom and sides of your screen.

You can use a piece of geometry or a Max Tape Measure object to show where your weapon is
really pointing. A guideline object about 15-20 feet (180-240 units) gives a good idea of how your
weapon is aimed; if the end of the guideline is on the vertical centerline of the screen, about 33% of
the way up from the bottom your weapon will appear to be pointing straight ahead in the game.

When a player jumps or falls the viewmodel will lag behind his motion by several frames. In the
case of violent accelerations (explosions, etc.) you may see parts of your viewmodel which you
thought safely off-camera hanging exposed in mid-air. Be sure to test your viewmodel with jumps,
falls, and explosions.

Perspective correction
Because the 90 degree camera view is very foreshortened, if you build your weapon to scale it will
look strangely stunted (and not very intimidating) in the camera view. You can apply a forced
perspective correction on the model using a Max FFD or Taper modifier. You can check your
results for visual effect in the 90 degree camera view.

Unfortunately if you are modeling hands to accompany your viewmodel, it is difficult to correct their
perspective because changing hand and finger positions can easily break the illusion. If you can
keep the animation of fingers and wrists to a minimum you can create a more convincing illusion.

Optimization
Since you have complete control over the viewers relationship to the viewmodel, you can greatly
optimize your model’s polygon usage. Any face on the model which is not visible from the
perspective camera can be safely deleted.

You should perform this optimization after animating the model, so that you can be sure which
polygons always face away from the camera. You can test an un-optimized version for jump-
induced viewpoint shifts (see above) as well. Since deletions are the only safe mesh-editing activity
you can perform after attaching a mesh to a skeleton, this is an exception to the general rule about
finishing your mesh before attaching it to the bones and animating it.

Clipping problems
There is a problem in the software renderer when the polygons in the viewmodel are clipped
through the rear clipping plane of the game camera. This usually manifests itself as black triangles
or “holes” in the affected parts of the model.

You can avoid this problem in part by not letting your model’s geometry intersect with the game
camera’s clipping plane. If you set the near clipping plane of your Max camera to 4 units, you’ll get a
fairly clear indication of which polygons would clip through the Half-Life camera’s frustum.

You should also consider subdividing polygons which are in danger of frustum clipping. If you have
a ring of vertices more or less parallel to the plane of the camera, you’ll keep clipping artifacts to a
minimum.

Attachment points for items
Many models may need to have sprites, multiplayer weapons, or other entities associated with them
in the game. Each model may have up to 4 attachment points defined in its QC file (see p. 43).
Attaching sprites or other entities is done in code – there is no way to preview it in Max.

The attachment points are identified with bones in your model’s skeleton. The exact point of
attachment is specified in units, expressed in the parent bone’s local coordinate space. If you are
including an object in your skeleton as an attachment point, it is helpful to make sure that in the
reference model it’s local coordinate system is rotated to match that of the world (you can adjust it
using the hierarchy command panel’s “Affect Pivot Only” and “Align to World” buttons”). This makes
the trial and error process of specifying attachment coordinates much easier to visualize.

The original shipping version of Half-life used player modeIs to hold attachment points for
multiplayer weapons, rather than using attachment points on the weapons themselves. This was
changed with the release of Team Fortress Classic – now if a multiplayer weapon model includes
an attachment point (say for it’s muzzle flash) that attachment point will over-write the
corresponding attachment point on the player model itself . In this way all player models can use
“attachment 0” for muzzle flashes and “attachment 1” for shell ejection without having to share only
four attachment points on the player model; each can specify a unique “attachment 0” or
“attachment 1” of its own.

Swappable body groups
Models can have multiple body parts that can be swapped independently of each other. A character
might have an optional helmet, pieces of armor, and other equipment which could be combined in
various ways to make a number of variants all in the same .mdl file. This is the only exception to the

rule that a model can have only one mesh object deforming with it at a time – each body group can
be an individual mesh object with it’s own vertex assignments.

Body groups must use the same skeleton. The easiest and most reliable way to make body groups
is to model all of the bodygroups in the same max file until you are ready to export. Then for each
bodygroup delete all of the others and export it separately (be sure to keep a copy of the body
group reference max file as well). Body groups animate with the base model and cannot be
animated separately – the bodygroup will simply be present or not. Only the base model will have
attachment points and controllers.

Body groups are an excellent method of creating visual variety and sharing texture memory. If you
have some characters which will appear in large numbers, you should consider body groups as a
method for individualizing the characters in a very efficient manner.

Half-life’s scientists and soldiers are good examples of how body grouping can create more variety
with little additional work.

Advanced Texuring
Texture Groups
Texturegroups are a mechanism for including multiple alternate textures in a model, similar in many
ways to bodygroups.

Texture groups are created in the QC file (see the $texturegroup command, p. 47). A texturegroup
consists of a series of texture maps that can be applied to the same geometry -- i.e. maps painted
for the same UV coordinates. Only one map is applied in 3dStudio – the others are indicated in the
QC file and swapped onto the model at runtime. The QC file defines the texturegroup by finding all
of the faces which use the member of the group as their texture.

The different maps can be swapped by game code to create an animated texture effect, such as the
blinking eye of the Houndeye. You could also use texture groups to create damaged or wounded
versions of a texture, or cyclical motions like a rolling tank tread.

All of the textures in a texture group will be loaded whenever a model is active (even if not all are
visible) so plan for the extra memory required if you intend to use texture groups.

MipMapping
Half-life models do not currently support Mip-mapping, a technique for optimizing the appearance
and memory usage of textures at varying distances. Geometry created in WorldCraft, however,
does support mip-mapping. It may be difficult to achieve seamless integration between a character
and an environment built in WorldCraft because of this disparity, so plan accordingly.

If texture sampling artifacts are particularly annoying, you may consider implementing a crude form
of mip-mapping using texture groups.

Camera Maps
Max’s “Camera Map” modifier projects UV coordinates onto a model using a perspective camera as
rather than a standard UVW Map gizmo. If you render a scene, then apply the a camera map to the
objects in the scene, the rendered image would perfectly match the geometry underneath – in
essence this is the same as the texture registration method outlined on page 22.

Using the camera Map modifier and UVW Map is a powerful way to optimize texturing objects
where you are sure you’ll have control over the viewer’s eye point – the most obvious example
being weapon viewmodels. The advantage of using a camera map is that you’ll have a distribution

of pixels based on how well the viewer can see the object – close up areas get a lot of pixels, while
far off areas or those seen very obliquely get but a few. The major limitation of this technique is that
it works best when there is not much change in the relationship of the player’s eye point to the
model – a weapon viewmodel, for example, assuming the weapon’s animations were not very
extreme.

 Make a set of high res textures for you model (you can even include rendering functions such as
specularity and bump maps which Half-Life does not support directly). Render your image with a
camera representing the eye point you expect to have when viewing the model -- in the case of a
viewmodel, this would be the player’s ordinary view of the model, for example. Then apply the
rendered image to the model as a camera map and a Half-life compatible bitmap texture.

If you seem to be wasting a lot of space on empty parts of the render, or you need to set the
resolution of your texture to a fixed size, first crop the texture and then use UVW Unwrap to scale
the texture coordinates to match the new size. The resulting mapping is the most efficient possible
use of texture pixels for the given eye point and model.

Team colors
Half Life allows you to remap two color ranges for multiplayer models, allowing you to use the same
models and textures for different teams in multiplayer. To support team color remapping, textures
must be named “DM_Base.bmp” (only one map with this name is allowed per model, naturally).
Remappable textures are 8 bit .bmp files like regular textures. There are two remappable ranges of
32 colors each, from palette index 193 through 224 and 225 through 256. The colors in these
ranges can be reset in code, or using the standard selector in the multiplayer options section of the
launcher. Remapping affects hues only – the saturation and value of the new color are identical to
those of the old color. For this reason pure grayscale, with a saturation of zero, would not remap
properly.

Chrome Maps
The Half-Life engine offers a unique kind of texture that you can use to simulate reflective or shiny
surfaces. A Chrome map is similar to what many 3-d packages refer to as environment or reflection
maps. Rather than gluing the texture to the vertices of the model, a chrome map moves with
viewer’s eye, giving the impression of a reflection that moves across the surface of a stationary
object. Unlike a true reflection map, however, the chrome map is never changes its orientation
relative to the viewer – thus you cannot walk around a chrome map object and see the “back”
reflection. For this reason your chrome maps should be indistinct and suggestive, rather than
mirror-like images intended for clear reflections. Chrome maps are best for somewhat irregular
surfaces where their limitations can’t be perceived as easily. Flat planes, which the view would
expect to have a real mirror-like reflection, will usually break the illusion.

All chrome maps must be 64 x 64 pixels. They can use any palette. To indicate to the exporter that
a maps is a chrome map, simply include the word “Chrome” in its name, i.e., “MyChrome.bmp”

When a chrome map is projected onto the model, it is stretched at the top and sides to give a
spherical impression. The effect is akin to wrapping a square piece of wrapping paper around an
object in a single motion.

Chome maps are wrapped around objects by smoothing group. This means that the bounding
volume for the spherical projection is based on the bounding box of all the faces in the model which
share this chrome map and have a common smoothing group ID applied to them. To create an
impression of greater complexity within a reflective object, you can break up the “chrome” area into
a number of smoothing groups, each of which will use a unique projection of the chrome and thus
will look somewhat different from the others

Advanced animation
Controllers
Controllers are Half-life’s mechanism for assigning direct control over a bone to the game code.
Each controller can set the rotation or position of a bone directly (relative to it’s original location in
the reference model) independent of the animation of the overall model. A simple example is the
moving mouths on the Half-life scientists; the jaw bones were hooked to a controller and the
controller was fed rotations based on the amplitude of the speech .wav files as they played.
Controllers are extremely useful for giving game code easy, precise access to character behaviors.

Controllers are defined in the QC file with $controller statements. The statement names a controller
channel (from 0 to 7), the affected bone, the axis of control and the limits of the movement. A model
can contain up to eight controller channels, with each channel may controlling any number of
bones. Each controller handles either the rotation or the translation of a single axis. A bone may
have more than one controller if it is moving and / or rotating in more than one axis.

In this example:

$controller 0 “radar_left” ZR 45 –45

$controller 0 “radar_right” ZR –45 45

$controller 1 “radar_left” Z 0 10

$controller 1 “radar_right” Z 0 10

$controller 2 “aim_up” XR –10 40

the bones “radar_left” and “radar_right” each have two controllers influencing them. The data from
channel 0 will cause the two bones to rotate in opposite directions around their local Z axes (notice
that the limits on the rotation are in reverse order). The data from channel 1 will cause them to
move along their local Z axes. The “aim_up” bone is controlled by channel 2 and will rotate around
it’s local X axis.

Translation controls are specified in world units, with 0 being the object’s position in the reference
file. Rotation controls are specified in degrees, again with 0 being the rotation in the reference pose.

Animation blending
Animation blending is another mechanism that allows game code to control a model directly. When
the soldiers in Half-Life rappel down from the Osprey, they point their guns using a blend between
to short animations – one pointing up and another pointing down. By manipulating the amount of
blending between the two sequences, you can create a number of poses or animations without
using controllers. Blends are good for situations where you need to adjust between two positions
involving several bones; controllers are good for situations where a single bone is used.

The QC file syntax for setting up blended animation is included in the description of the $sequence
command on page 50.

QC file reference

QC Files
The QC file is essentially a script which tells StudioMDL how to compile a model out of the SMDs
and textures you have created.

The minimum set of commands needed to create a model are:

$modelname tells StudioMDL where to place the MDL and what to call it.

$cd tells StudioMDL where to find the source files for the model

$cdtextures tells StudioMdl where to find the textures for the model.

$body Identifies a reference SMD

$sequence creates an animation sequence

Every QC file must have at least one of each of these statements

Formatting
QC files are plain text files and can be created in any text editor. The files are “white space”
delimited, meaning that spaces, tabs or returns can be used to separate arguments. For best
legibility, keep all commands on their own lines and use curly brackets (see below) to split complex
commands over several lines.

You can include comments in your QC files by preceding lines with double slashes “//” or by using C
language commenting:

 /*
 <comment>
 */

 to enclose multi-line comments.

Commands and arguments are case –insensitive. Pathnames, file names, and other text data
should be enclosed in quotes

Compiling QC files into Models
In most case you compile a model by invoking StudioMdl and passing it a path to the QC file you
wish to compile, e.g.:

StudioMdl models/barney/barney.qc

will compile the barney.qc file. The QC will tell StudioMdl where to find the source files and where
to output the resulting .mdl file.

If you are comfortable with windows batch files, here’s a useful trick for streamlining your work with
StudioMdl. Create a batch file which will navigate to the place where you want to call StudioMdl
(usually this will be just above the top level of your project – for details on how to organize your
directory structure for efficient production see Setting up your work files on p.9 Then add a call to
StudioMdl with a parameter variable (%1). This will pass whatever argument the batch file gets on

to StudioMdl. When you have your batch file complete, use the windows file type editor to associate
files with the .qc extension with your new batch file. Now you can compile a QC file simply by
double-clicking on the QC or dragging it onto your batch file’s icon.

Here’s a sample batch file which will also pop up a window for you to view the results of the compile
operation. You may have to edit the path names If you don’t use the standard directory setup
described on p. 9.

echo off
title compiling QC for %1
color 3F
cd \
cd Sierra\Half-Life
studiomdl %1
pause

Advanced Max Script users can also write scripts which call StudioMdl directly using Max’s
DOSCOMMAND() function.

Path names
QC files support both relative and absolute path names. We suggest using relative pathnames (see
Setting up your work files, p. 9) to facilitate cooperation. Pathnames will be relative to the directory
from which StudioMdl is invoked – usually the Half-Life root directory.

When specifying SMD file paths, do not include the .smd suffix. Enclose all path names in quotes.

QC command listing
$attachment <ID#> <bone> <X> <Y> <Z> Identifies an attachment point for sprites,

weapons, and shell ejection. There is a
limit of 4 attachment points per model

<ID#> is unique identifying number from 0
to 3.

<bone> is the name of the bone to which
the attachment is attached, enclosed in
quotes.

<X> <Y> <Z> specifies the location of the
attachment point in the parent bone’s local
coordinate system (e.g. 0 0 0 is at the
bone’s location, 0 12 0 would be 12 units
from the bone in the bone’s local Y
direction).

If an attachment point is specified in a
multiplayer weapon model (e.g.
p_TFautocannon.mdl) it will override
the corresponding attachment point in
the parent player model. This allows you
to have different muzzle flashes or
ejection points for every weapon model.

$bbox <X> <Y> <Z> <X2> <Y2> <Z2> Defines the character’s bounding box. <X>
<Y> <Z> and <X2> <Y2> <Z2> are
opposite corners of the bounding box. The
bounding box must be centered at the
world origin, so X = -X2 and Y = -Y2. Z
should be 0 and Z2 will be the height of
the bounding box.

$body studio <path> [reverse] Specifies the smd file to use as a
reference.

Studio is a tag telling the system to load a
reference SMD.

<path> is the path to the reference SMD
file, enclosed in quotes. Do not use the
.smd suffix in the path; e.g.:
“/models/test/body” not
“models/test/body.smd”

[reverse] is an optional tag which will flip
the normals on the entire mesh if Max
exports them facing the wrong way. If your
model appears turned inside out in the
engine, add reverse to the $body line.

$bodygroup <name>
{
studio “partreference”
studio “part2reference”
blank
…
}

Defines bodygroup named <name>.

Body groups are models that be swapped
by code to provide variations on a
character, e.g.. The scientist’s heads in
Half-Life.

 All of a model’s bodygroups should be
attached to copies of the same skeleton
(this is the only way in which a skeleton
can have more than one deformable mesh
attached to it). Bodygroups will move and
deform with the character as it animates.
A “blank” bodygroup is a dummy entry
which will not be visible in the game. It is
used as a standin for objects, such as
weapons, that may not be present in all
instances of a character.

The list of parts in the $bodygroup
command is enclosed in curly brackets.
Each entry is either the tag studio
followed by a reference SMD file name
enclosed in quotes, or the tag blank
indicating an empty bodygroup.

Do not include the .smd suffix in filenames

$cbox <X> <Y> <Z> <X> <Y> <Z>

$cd <path> Specifies the path to the source files for
the model.

$cdtexture <path> [<path> ...] Specifies the path to the location of the
model’s 8 bit textures. You can specify
multiple paths (separated by spaces) if
you have textures stored in more than one
place. If you have multiple texture paths all
file names must be unique.

$cliptotextures

$controller <Id#> <bone> <axis> <limit1> <limit2> Gives control of one axis of a bone’s
rotation to the AI. Each axis of rotation
needs its own controller.

There is a limit of 4 controllers per model.

<ID#> is a unique number from 0 to 3
identifying the controller.

<bone> is the name of the bone to be
controlled. It should be enclosed in
quotes.

<axis> is the local axis of the bone to be
controlled

<limit1> and <limit2> are the extreme
values that the controller can rotate to (in
degrees). You can reverse the motion of
the controller by reversing the order in
which the limits are specified.

$externaltextures Optional command, specifies that the
textures for the model will be stored
separately, so information in the model
can be accessed without loading the
models textures.

$eyeposition <X> <Y> <Z> Sets the position (in worldspace) of the
point from which the AI will make the
character’s vision checks.

$flags <#>

$gamma <src value> Optional parameter specifies a gamma
value for the textures in the completed
mdl. Defaults to 1.8

$hbox <group #> <bone> <X> <Y> <Z> <X2> <Y2> Specifies the hit detection box for the

<Z2> specified bone.

<group#> is the id number of the body part
(head, leg, arm, etc) to which this bone
belongs

<X><Y><Z> and <X2> <Y2> <Z2> are
opposite corners of the hit box, defined in
local bone space.

Characters with no defined $hboxes will
have a best-fit set of hit boxes generated
automatically. All of the automatically
generated boxes will be assigned to group
0

$hgroup <group #> <bone>

$include <QC file path> Inserts the contents of another QC file at
the current point in the QC. Contents are
treated as if they were typed into one file.
Useful for organizing characters with large
numbers of sequences, or for sharing
animations between multiplayer models to
ensure identical sequence indices

<QC file path> is the path to the other qc
file, enclosed in quotes.

$mirrorbone <bone>

$modelname <path> Specifies the name of the completed mdl
file. The filename should include the .mdl
suffix

$origin <X> <Y> <Z> Offsets the entire Max file so this point is
now at 0,0,0. Equivalent to moving the
whole scene by –X ,–Y, –Z units.

Affect all subsequent sequences until a
new $origin is encountered. If you
intend to globally reposition a model and
its animations, be sure to place the $origin
command before the $body / $bodygroup
statements.

$Rotate < # degrees> Rotates the animation sequence around
the Z (vertical) axis by the specified
number of degrees. Rotate 90 would turn
an animation facing forward into one
facing left, for example.
Affects all subsequent statements until
another $rotate is encountered. If you
intend to globally rotate a model and its
animations, be sure to place the $rotate

command before the $body / $bodygroup
statements.

$scale <factor> Globally scale the model by this factor.
You can omit this command unless you
need to rescale a model from its default
size. Affects all subsequent statements
until another $scale is encountered.

If you intend to globally scale a model and
its animations, be sure to place the $scale
command before the $body / $bodygroup
statements.

$sequence <name> <path> {
[<blend smd path> ...]
[fps <#>]
[loop]
[frame <start> <end>]
[origin <X> <Y> <Z>]
[rotate <angle>]
[scale <#>]
[blend <axis> <start> <end>]
[LX]
[LY]
[LZ]
[event <#> <frame> [options]]
}

See The $Sequence Command, below.

$sequencegroup <name>

$sequencegroupsize <# in KB> Sets the size for the

$texturegroup <name>
 {
{“basetexture” “basetextureB” “basetextureC”}
{“texture2” “texture2B” “texture2C”}
{“texture3” “texture3B” “texture3C”}
…
}

Creates a texturegroup using the faces
which have the texture(s) <basetexture>
etc. applied to them in the reference SMD
file.

Each group is enclosed in brackets. A
group may contain one or more textures;
when the texturegroup is swapped, each
texture will be swapped for the
corresponding entry in the new group, i.e.
“basetexture” will become “texture2”,
“basetextureB” will become “texture2B”
and so on. Texture names are enclosed in
quotes.

All of the groups should be enclosed in
one pair of brackets as in the example.

The $sequence command
The $sequence command has a large number of optional parameters. The minimum required
parameters for a $sequence are the identifying name for the sequence (enclosed in quotes) and the
path to an SMD file (enclosed in quotes, with no .smd suffix).

If you have only a couple of parameters to add to the basic name-SMD pair, you can just include
them on the command line, e.g.:

$sequence “sample” “sample_animation_file” fps 15 loop

If your $sequence has a large number of optional parameters, you may find it useful to enclose the
arguments of the sequence in curly brackets {} so you can format the parameters more legibly. The
system will see:

$sequence “confusing” “models/test/samplesequence” fps 30 LX loop origin
0 –10 –10 rotate 90

and

$sequence “confusing” “models/test/samplesequence”
{
fps 30
lx
loop
origin 0 –10 –10
rotate 90
}

as being the same, however the second example is much more readable.

Animation events should be enclosed in their own set of brackets. Bracketed animation events can
reside inside a bracketed set of $sequence parameters, e.g.:

$sequence “confusing” “models/test/samplesequence”
{
fps 30
lx
loop
{event 6 10 }
{event 1008 20 “funkysound.wav”}
}

For more details about using animation events, see

Animation events, below.

Sequence playback parameters
Fps <#> Sets the target framerate of the animation in frames per second. If no fps value is

supplied the animation will default to 30 fps. Systems unable to match the target
framerate will still preserve the real-time length of the animation (see
Interpolation, p.31)

LOOP A tag that identifies an animation intended to loop seamlessly. For details on
creating looping animations see Loops, p. 35.

Frame <start#> <end#> Tells the sequence to use only a subset of the frames in the animation SMD.
Sequence will use frames <start #> through <end #>, inclusive and ignore others.
Since animations can start at an arbitrary time , Start# and end# are absolute
(i.e., frame 21 is time 21 in the original Max file – not the 21st frame of the SMD
file).

Moving, scaling and rotating sequences

If these parameters are properly enclosed in a parameter block, they will affect only this sequence
(unlike the command versions, $origin, $rotate, and $scale which affect all subsequent QC
statements).

Origin <X> <Y> <Z> Offsets the entire animation so point <X>,<Y>,<Z> is now at 0,0,0. Equivalent to
moving the whole scene by –X ,–Y, –Z units.

rotate <# degrees> Rotates the animation sequence around the Z (vertical) axis by the specified
number of degrees. Rotate 90 would turn an animation facing forward into one
facing left, for example.

Scale <# factor> Scales the animation (starting from origin) globally, by <# factor>. Useful primarily
for adjusting animations for a character that has been scaled with the $scale
command.

Animation events
Animation events are flags in the animation sequence representing interactions between the
character and the world. Animation events tell the AI at what moment an attack is launched, or a
character dies, when a scripted event (such as a scientist opening a door) has happened, and so
on.

A sequence may have multiple animation events (for example a walk animation might have a
footfall sound for each foot hitting the ground. Some scripted sequences can have quite a few
events.

Events are enclosed in curly brackets. The simplest event calls look like {event <#> <frame>}
where <#> is the number which tells the system what kind of event has occurred and <frame> tells
the system at which frame the event takes place.

Events which call sound files have an additional parameter, which is the path to the sound file or
sentence file to play (relative to the sounds directory). Events which trigger map entities have an
extra parameter for the name of the trigger (enclosed in quotes).

Events with ID numbers below 1000 are specific to individual monsters, so the scientists’ event 1 is
different from the Vortigaunts’ event 1. The meaning of monster specific events is indicated in the
monster AI code.

Events with numbers in the 1000 range are scripted sequence events. Events with numbers in the
2000’s are for monsters (only). Events in the 5000 range are client-side only, and are used primarily
for muzzleflash or sound effects for weapon viewmodels.

 Scripted Sequence events Extra parameters
1000 Character dead at this point
1001 Sequence un-interruptible from this point

1002 Sequence interruptible from this point
1003 Fires a trigger in the map Trigger name
1004 Play .wav file .Wav file path
1005 Play sentence file Sentence file path
1006 Do not send character back to floor at end

of script

1007 Go to this animation after script completes Animation sequence name
1008 Play named .wav file through voice

channel
.Wav file path

1009 Play random sentence group (25 %
chance)

1010 Character is alive at this point

 Monster specific events
2001 Monster drops light body
2002 Monster drops heavy body
2010 Monster plays swing or swish sound
2020 Monster has turned 180
 Clientside events for viewmodels
5001 Muzzleflash on attachment 0 Muzzle flash sprite path
5002 Spark on attachment
5004 Emit a sound Wav file path
5011 Muzzleflash on attachment 1 Muzzle flash sprite path
5021 Muzzleflash on attachment 2 Muzzle flash sprite path
5031 Muzzleflash on attachment 3 Muzzle flash sprite path
6001 Eject a brass shell from attachment

Animation blending
To set up a blending animation, include a second SMD file path after the first in your $sequence
line. Then follow it with the blend tag, which allows you to specify the limits for the blend in the
same manner as for a $controller. So a simple blend statement would look like this:

$sequence “blend” “up_pose” “down_pose” blend XR 45 -45

The two animation SMDs in a blend $sequence have to have the same number of frames.

Motion extraction
Movement animation sequences should include one or more motion extraction tags. Motion
extraction allows you to animate walks and runs normally, rather than having to create cycles in
place (see p.32).

The Motion extraction tags are LX, LY, and LZ. They enable motion extraction for the X Y and Z
axes respectively. However, the engine’s internal coordinate system is rotated 90 degrees around
the vertical axis from Max’s system. The LX parameter therefore extracts motion in the Max Y
dimension, and LY extracts Max’s X motion.
This is the only place where you should have to worry about the difference in coordinate systems.

Template QC file
This is an example of a generic QC file. You can use it as a reference when building your own QCs.

// Sample QC file
// Comments go here

// Created April 7, 2000 by SJT
$modelname Mymod/models/modelnamegoeshere.mdl

$cd models/samplemodel
 // the source is probably in Half-Life/models/samplemodel.

$cdtextures “models/samplemodel/8 bit textures”
 // if pathname includes spaces, enclose it in quotes

$scale 1
 // scale the entire thing by this scale – in this case, don’t change it.
$body studio “TheReferenceSMDFile”
// add “reverse” if the normals are flipped

$sequence “idle” “IdleAnimationSMDfile” fps 30 loop ACT_IDLE 1
$sequence “walk” “WalkAnimationSMDfile” fps 30 LX loop ACT_WALK 3
$sequence “AlternateWalk” “OtherWalkAnimationSMDfile”
 {
 fps 15

LX
Loop
ACT_WALK 1

 {event 1 15 “samplesounds/Samplesound.wav”}
)

// this is a way of formatting a line with a lot of options.

SMD file format

The SMD file format is a simple text file, easily edited in any text editor. SMD files are carriage
return sensitive – each line must end with a carriage return. the file should also include at least one
carriage return after the final end statement. White space is the only delimiter; any combination of
tabs and spaces can be used to separate values (for this reason multiword names should be
enclosed in quotation marks (").

SMD files come in two version, Reference and Animation files. The two are identical except that
animation SMDs omit the triangle and texture map data in reference SMDs and contain bone
position/rotation data for every frame.

Here are the sections of an SMD file, considered in order:

Header data:
The only header data required is the tag “version 1” in the first line of the file

Node tree data:
Builds a list of all the bones in the skeleton. Each bone has a unique ID number, a unique text name
and a pointer to the ID number of its parent. Children of the world use –1 as their parent ID. ID
numbers are integers (starting from 0). Names are text, enclosed in quotes. Names may contain
spaces.

nodes

Starts the node tree data block
<ID> “Bone Name” <parent ID>

<ID> is a the ID number for this bone. “Bone Name” is a text name for the bone, enclosed in
quotes. <Parent ID> is the ID number of the bone’s parent. Children of the world (unparented
objects) have a parent ID of -1
. . .
. . .

. . .

end

Ends the node tree data block

Skeleton Pose data
This block contains the position and rotation data for every bone in the skeleton. In an animation
SMD there will be a “time” block for every frame in the animation. In reference SMDs there will only
be one time block.

The skeleton block is begun by the “skeleton” tag and ended by an “end” tag. Time block begin with
“time <frame>” and end when a new “time” tag is encountered.

Skeleton

Begins the skeleton pose block
Time 0

Begins this time block
<ID> <PosX> <PosY> <PosZ> <RotX> <RotY> <RotZ>

<ID> is the bone <PosX>, <PosY> and <PosZ> are the position in world units (good to 6 significant
digits). <RotX> <RotY> and <RotZ> are local Euler rotations in radians. Bones which are not children of
the world report their position and rotations in their parent’s local space.
.
.
.

Time 1

Begins next time block. Every bone has a pose entry for every frame. Reference SMD’s export only one frame.
.
.
.

end

Ends skeleton pose block

Triangle block
The triangle block contains a list of triangles. Each triangle is preceded by a bitmap texture file

name (filename only – path data is supplied in the QC file). Each vertex of the triangle then reports

its parent bone’s ID, the vertex’s position, the vertex’s texture coordinates, and its normals.

The Triangle block is begun with the “triangles” tag and ends with the “end” tag.

Triangles

Begins the skeleton pose block
“bitmapname.bmp”

Name of the bitmap file for the texture assigned to this face. Includes .bmp suffix. Enclose in
quotes.
<Parent> <PosX> <PosY> <PosZ> <NormX> <NormY> <NormZ> <TexU> <TexV>

Parent is the ID number of the vertex’s parent bone. > <PosX>, <PosY> and <PosZ> are the
position of the vertex in world space. <NormX>, <NormY> and <NormZ> are the components of
the vertex’s normal vector (normals may be interpolated if triangle is part of one or more smoothing
groups). <TexU> and <TexV>are the texture coordinates for this vertex.

.

.

Each triangle contains 3 vertex records

“nextBitmapName.bmp”

new bitmap file begins a new triangle listing
.
.
.

end

ends triangle block.

Sample SMD file
This sample is a reference SMD. Animation SMD’s would have multiple time blocks and no
triangles block.

version 1 a tagline. required by all smds
nodes begins the skeleton parent list
0 "bone01" -1 this bone has the ID #0, it's called

"bone01" and its parent is ID -1 (i.e. the
world)

1 "Bone02" 0 this bone is ID #1, it's called "Bone02"
and its parent is bone 0 (i.e., "Bone01")

.

.

.

etc., etc.

end ends the skeleton parent list
skeleton starts the list of bone positions and

rotations
time 0 Begins a time block for time 0. In an

animation SMD you’ll have multiple

blocks. A reference SMD has only one.
0 -0.31545 0.00000 0.94637 0.00000 0.00000 0.00000 Bone ID 0 is at -3.1545, 0,.94637 and

rotated 0,0,0 (Euler angles IN RADIANS -
not degrees!)

1 8.83281 0.00000 29.0221 0.00000 0.31562 0.00000 Bones with a parent other than -1 report
their position and rotation in their parent's
local space. So bone ID 1 is 8.8 units from
bone ID 0 in Bone ID 0's local X direction,
and 29.0221 units in Bone ID 0's local Z
direction. (note that in this case, since
bone ID 0 is rotated to 0,0,0 it the local
and world locations will be the same)
Rotations are likewise relative. This bone
is rotated .31562 from the parent's Y axis
(about 18 degrees).

.

.

.

etc., etc.

end the end of the skeleton position/rotation
section

triangles starts the triangle list
"sample.bmp" the texture name for this face (texture

location is specified in the QC file)
3 -21.95 8.83 0.07 0.0 .707 0.0707 0.5122 0.9109 the first vertex of this triangle is attached

to bone ID 3. It's position IN WORLD
SPACE is (-21.95, 8.83, 0.07). The vertex
normal vector is (0.0, .707, .707) - this
value is calculated taking account of
smoothing groups. The texture
coordinates of this vertex are .5122 in the
U texture direction and .9109 in the V
texture direction.

3 -21.1 8.5 1.00 0.0 0.50 0.50 0.61 0.932 the second vert of the triangle is also
attached to bone ID 3: It's at (-21.1, 8.5,
1.0) and it's normal is (0,.5,.5) . Tex
Coords U:.61 V:.932

2 -22 9 1.1 0.0 1.0 0.0 0.66 0.944 the third vert of the triangle is attached to
bone ID 2. The position is (-22,9,1.1), the
normal is (0,1,0) i.e., straight forward and
the texture coords are U:.66 V:.944

"sample.bmp" a new face record starts with a new
texture listing, even if it has the same as
the texture in the previous face.

.

.

.

etc., etc.

end <CR> end of the triangle list and of the file

StudioMDL reference

StudioMdl.exe (by default found in Half-Life/Valve/Bin) is the program which compiles half-life .mdl

models from SMDs, bitmap textures, and QC files. It is a DOS command line program. Ordinarily

StudioMdl is run with only the name of a QC file as an argument. The following options are available

for special purposes:.

The command line options of interest are:

-a <value> Blends surface normals together into single surfaces,
optimizing the model in memory. The default value is 2,
which should suffice for everything you do. It can be
played with at your discretion, however.

-h Output hitbox info. If you run with this option and
redirect your screen output into a text file, StudioMdl will
generate a list of the hitbox sizes for each bone of your
creature. It generates these hitboxes automatically, You
can cut and paste that information back into the .qc file
and edit the information if necessary. Doing this will
allow for a more accurate representation of the model for
determining whether or not shots hit the creature.

-i Ignore warnings. Useful if there are undone aspects to
the model, yet you wish to test it out anyway.

-t <bmpname> Replace all textures on the model with a single texture.
Useful for testing smoothing groups, but can also be
mimicked with the “r_drawentities” console variable.

-t <sourcetexture> <replacetexture> This allows you to replace one texture within a model
with another texture.

Command line options
Reading output

Action Tags

This is a list of the action tags recognized by the AI system. For more details about how action tags
interact with the AI code, see the relevant documentation in the SDK.

Remember, when calling action tags in the QC file you must specify a weighting number (use 1 if
you don’t need the weighting functionality). Action tag weights are described in detail on page 36.

No sequence can use more than one action tag. If you want to use the same animation for more
than one action, call the SMD from multiple $sequences, with a different action tag for each.

Many actions will need animation events to make them fully functional, i.e.: to indicate when an
attack connects, when a hit lands, or when a sound should play. Monster specific animation events
are commented in the AI code. Generic animations events are documented on p. 49.

Action Tag Description
ACT_ARM Activate weapon (e.g. draw gun)

ACT_BARNACLE_CHEW Barnacle is holding the monster in its mouth (loop)

ACT_BARNACLE_CHOMP Barnacle latches on to the monster

ACT_BARNACLE_HIT Barnacle tongue hits a monster

ACT_BARNACLE_PULL Barnacle is lifting the monster (loop)

ACT_BIG_FLINCH Large reaction to non-specific hit

ACT_BITE This plays one time eat loops for large monsters which can eat small things in one bite

ACT_COMBAT_IDLE. Agitated idle, played when monster expects to fight

ACT_COWER Display a fear behavior

ACT_CROUCH The act of crouching down from a standing position

ACT_CROUCHIDLE Hold body in crouched position (loop)

ACT_DETECT_SCENT This means the monster smells a scent carried by the air

ACT_DIE_BACKSHOT Die hit in back

ACT_DIE_CHESTSHOT Die hit in chest

ACT_DIE_GUTSHOT Die hit in gut

ACT_DIE_HEADSHOT Die hit in head.

ACT_DIEBACKWARD Die falling backwards

ACT_DIEFORWARD Die falling forwards

ACT_DIESIMPLE Death animation

ACT_DIEVIOLENT Exaggerated death animation

ACT_DISARM Put away weapon (e.g. re-holster gun)

ACT_EAT Monster chewing on a large food item (loop)

ACT_EXCITED For some reason monster is excited. Sees something he really likes to eat or whatever.

ACT_FALL Looping animation for falling monster

ACT_FEAR_DISPLAY Monster just saw something that it is afraid of

ACT_FLINCH_CHEST Flinch from chest hit

ACT_FLINCH_HEAD Flinch from head hit

ACT_FLINCH_LEFTARM Flinch from left arm hit

ACT_FLINCH_LEFTLEG Flinch from left leg hit

ACT_FLINCH_RIGHTARM Flinch from right arm hit

ACT_FLINCH_RIGHTLEG Flinch from right leg hit

ACT_FLINCH_STOMACH Flinch from stomach hit

ACT_FLY Fly (lx loop)

ACT_FLY_LEFT Turn left in flight

ACT_FLY_RIGHT Turn right in flight

ACT_GLIDE Fly without wing movement (lx loop)

ACT_GUARD Defend an area

ACT_HOP Vertical jump

ACT_HOVER Idle while in flight (loop)

ACT_IDLE Default behavior when nothing else is going on (loop)

ACT_IDLE_ANGRY Alternate idle animation in which the monster is clearly agitated. (loop)

ACT_INSPECT_FLOOR For active idles -- look at something on or near the floor

ACT_INSPECT_WALL For active idles -- look at something directly ahead of you
(doesn't have to be a wall or on a wall)

ACT_LAND End of a jump

ACT_LEAP Long forward jump

ACT_MELEE_ATTACK1 Attack at close range

ACT_MELEE_ATTACK2 Alternate close range attack

ACT_RANGE_ATTACK1 Attack with ranged weapon

ACT_RANGE_ATTACK2 Alternate ranged attack

ACT_RELOAD Reload weapon

ACT_ROLL_LEFT Tuck and roll left

ACT_ROLL_RIGHT Tuck and roll right

ACT_RUN Run (loop)

ACT_RUN_HURT Limp (loop)

ACT_RUN_SCARED Run displaying fear (loop)

ACT_SIGNAL1 Signal

ACT_SIGNAL2 Alternate signal

ACT_SIGNAL3 Alternate signal

ACT_SLEEP Sleep (loop)

ACT_SMALL_FLINCH Small reaction to non-specific hit

ACT_SNIFF This is the act of actually sniffing an item in front of the monster

ACT_SPECIAL_ATTACK1 Monster specific special attack

ACT_SPECIAL_ATTACK2 Monster specific special attack

ACT_STAND The act of standing from a crouched position

ACT_STRAFE_LEFT Sidestep left while maintaining facing (loop)

ACT_STRAFE_RIGHT Sidestep right while maintaining facing (loop)

ACT_SWIM Swim (loop)

ACT_THREAT_DISPLAY Without attacking monster demonstrates that it is angry

ACT_TURN_LEFT Turn in place quickly left

ACT_TURN_RIGHT Turn in place quickly right

ACT_TWITCH Twitch

ACT_USE Use item

ACT_VICTORY_DANCE. Victory display after killing player

ACT_WALK Walk (loop)

ACT_WALK_HURT Limp or wounded walk (loop)

ACT_WALK_SCARED Walk with fear display (loop)

Working with Half-Life Content from the Half-Life SDK

The Half-Life SDK includes Max models, textures, QC files and other resources from the Half-Life.
The models included are generally stored in Max r1.2 format. If you are using Max r3 or later, you
may find problems working with Half-Life models, due to file format incompatibilities between Max
versions. We have observed irregular but fairly common problems with opening Max r1.2 files in
Max r3. Generally opening the Max files in Max r2 or r2.5 and resaving them will minimize
problems.

Many of the original models were created using the Texturizer plug-in from Sven Technologies.
Texturizer performs many of the same functions as UVW Unwrap. If you need to work with content
that was built with the Texturizer plug-in, you can order a copy of the SurfaceSuite Pro package
from Sven’s website at www.sven-tech.com (phone 415-625-0310). If you are only interested in
working with animation or QC data you do not need Texturizer – textures may appear garbled in
your Max windows but the model will compile correctly if you use the original reference SMD files.

If you are working with Max 1.2 you will need the original version of the SMD exporter, which
contains the files SMDexp.dle and Smdexp.ilk. Place the files in your max Plug-ins folder. This
version of the exporter requires that you export a .vph file from within your Physique modifier as well
as the reference SMD. The vph file helps StudioMdl assign vertices to bones in the compiling
processes. To save a .vph file use the “file” button when the command panel is open to your
Physique modifier. When working with Half-life content, be sure you have the .vph files as well as
the SMD’s and textures before attempting to recompile the models.

The SDK also includes a version of the exporter recompiled for Max r2. It functions identically to the
original export plug-in.

In Max 3 and later, the exporter consists only of the smdexp.dle file. You do not need to export .vph
files with this version of the exporter.

Index

$Sequence Command, 30
Syntax, 47

Action Tags, 56
Animation, 29

Cycles, 32
Exporting, 30
Framerate, 31
Interpolation, 32
Length, 35
Multiplayer, 34
Planning, 7

Animation Blending, 41
QC Syntax, 50

Animation Events
QC Syntax, 49

Attachment Points, 8, 38
Batch Files, 43
Bipeds, 25
Body Groups, 38
Bones, 23

Local Orientations, 24
Camera Maps, 39
Chrome Maps

File Names, 9
Chrome Maps, 40
Compound Objects

Booleans, 17
Lofts, 16
Shapemerges, 16

Compound Objects, 16
Controllers, 40
Directory Structure

Planning, 9
Sample, 10

Editable Mesh
And Stack, 13

Overview, 12
Linked Xform, 28
Materials, 17

ID Numbers, 19
Multi/Subobject, 18

MDL Files
Introduction, 4
Viewing, 4

Meshes
Building, 11

Mipmapping, 39
Modeling

Strategies, 11
Models

Planning, 5
Polygon Counts, 5
Workflow, 5

Modifiers
Cap Holes, 16
Cut, 14
Extrude, 13
FFD Modifiers, 15
Mesh Smooth, 15
Optimize, 15
Slice, 14
Tessellate, 15
Weld Selected, 13

Modifiers
Collapse, 13
Linked Xforms, 28
Physique, 26
Skin, 27
UVW Map, 21
UVW Unwrap, 21

Modifiers Target Weld, 13
Motion Extraction, 50

Normals
Flipping, 16

Palettes
Remappable, 40

Physique, 26
Polygons

Budgeting, 5
Normals, 16

QC Files
Command Listing, 43
Introduction, 4

QC Files, 42
Scripted Sequences, 33
Skeletons

Attaching Vertices, 25
Bones, 23
Creating, 23
Planning, 8
Scaling, 8

Skin, 27
SMD Files

Format, 51

Introduction, 3
Smoothing Groups, 14
Studiomdl

Introduction, 4
Reference, 54

Team Colors, 40
Texture Groups, 39
Textures

$Externaltextures, 7
Applying, 20
Budgeting, 6
Memory Requirements, 7
Palettes, 19
Remappable, 20
Repeating, 21
Size Limitations, 20
UV Mapping, 20

Texturing
Introduction, 17

Vertex Colors, 15
Weapon Viewmodels, 37

