Pytorch入门实战 | 第P3周:天气识别

11 篇文章 ¥29.90 ¥99.00
本文是PyTorch入门系列的第三篇,主要介绍如何构建简单的CNN网络进行天气识别。内容包括前期准备(设置GPU、导入数据、划分数据集),构建CNN网络,训练模型(设置超参数、训练与测试函数),以及结果可视化。要求测试集accuracy达到93%,并提供了拔高标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⏲往期文章:

Pytorch实战

难度:新手入门⭐

🍺要求:

  1. 本地读取并加载数据。
  2. 测试集accuracy到达93%

🍻拔高:

  1. 测试集accuracy到达95%
  2. 调用模型识别一张本地图片

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:jupyter notebook
  • 深度学习环境:Pytorch
  • 数据:🔗百度网盘(提取码:hqij )

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值