CNN入门讲解:卷积层是如何提取特征的?

本文介绍了卷积神经网络中的卷积层如何提取图像特征。通过点乘运算,卷积核与图像像素交互,提取特征值。文章讨论了卷积核的权重、步长(stride)、填充(zero padding)对特征图大小的影响,以及它们在保持特征信息和控制网络结构中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击关注我 然后看我资料 + 群 可以免费获取学习资料哈

 

这个最简单的卷积神经网络说到底,终究是起到一个分类器的作用

卷积层负责提取特征,采样层负责特征选择,全连接层负责分类

‘这位同学,你说的简单,其实我对卷积层怎么实现特征提取完全不懂’

问的好,卷积神经网络的出现,以参数少,训练快,得分高,易迁移的特点全面碾压之前的简单神经网络

而其中的卷积层可以说是这个卷积神经网络的灵魂

我们接下来会分两节来分析,卷积层到底是怎么充当“灵魂伴侣”这个角色的

 

正常情况下,我们输入图片是RGB格式,也就对红(R)、绿(G)、蓝(B)三个颜色

 

让我们来看蓝蓝的天空

什么,你看这天空是绿的?

那这位兄弟,你该去休息休息

 

RGB格式大家自己谷歌吧,这也不多说了

总的来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值