数据降维算法——主成分分析

数据降维是机器学习中的重要算法,PCA(主成分分析)是一种常用方法。PCA通过选取低维度空间,保持数据的离散性。在数学上,PCA涉及协方差矩阵、特征值与特征向量的计算,并通过特征值排序选择主要成分。PCA在数据可视化和特征选择中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据降维

数据降维在机器学习中非常有用,可以用来舍弃数据中一些区分度较小的特征,转化数据的观察视角,使其在更少量的特征维度上也有较好的表现。数据降维也可以用在将高维数据可视化的操作中,这都是不可或缺的重要算法,

PCA

PCA(Principal Components Analysis)主成分分析法,是一种常用的数据降维算法。

PCA的主要思路,是选取数据特征中一些较低维度的空间,让数据在这些空间上的方差比较大,这个时候我们可以认为数据是比较分散的,我们在这个低维度空间依然还能表现出数据的离散性。

数学

在正式介绍PCA的步骤之前,有一些重要的数学知识能够极大的帮助我们计算。如果你读完了本节还是不清楚,下面两篇文章或许可以帮到你。

参考一

参考二,数学原理

方差表示

假设矩阵的每一行表示一组数据,每一列表示一维特征,即A_{n \times m}A​n×m​​。

协方差矩阵可以表示为:

其中nn是数据组数。

反之,若用行表示每组特征,则

Cov = \frac{1}{n} A A^TCov=​n​​1​​AA​T​​

显然,协方差矩阵CovCov是实对称矩阵。

特征值与特征向量

对于矩阵AA,如果存在\lambdaλ和向量vv满足

A v = \lambda vAv=λv

那么称\lambdaλ为AA的特征值,vv为AA的特征向量。

特征值特征向量的求解

求解(2)式就可以算出所有的特征值与特征向量。

特征值与特征向量的性质

将矩阵按照特征值可以分解为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值