论文FCHD: Fast and accurate head detection in crowded scenes详解

github源码下载地址

论文下载地址:https://arxiv.org/pdf/1809.08766v3.pdf

目标检测论文集合详解

目录

提出目的和方法

提出目的

提出方法

整体模型架构

Anchor Box尺度设计

训练方案以及anchor box的分配策略

GT Box和Anchor box之间的最佳匹配过程

难例挖掘(Hard Negative Mining)

损失函数

实验部分

训练和测试


提出目的和方法

提出目的

        基于检测的人群计数,检测方法通常比以往的密度图人群计数技术提供更可靠的结果。因为在密度图的情况下,并不总是正确的位置会对最终的人群计数产生贡献。这导致了不可靠的结果,特别是在出现误报的情况下。

提出方法

        提出了 FCHD(全卷积人头检测器),一个可端到端训练的人头检测模型。提出的架构是一个单一的全卷积网络,负责边界框预测和分类。模型在推理时间和内存需求上都较轻便。与运行时间相关,模型在平均准确度(AP)上表现更好,这得益于基于网络有效感受野选择锚点大小

整体模型架构

Anchor Box尺度设计

训练方案以及anchor box的分配策略

GT Box和Anchor box之间的最佳匹配过程

难例挖掘(Hard Negative Mining)

论文Receptive Field Block Net for Accurate and Fast Object Detection详解(+代码详解)

损失函数

实验部分

训练和测试

数据集下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值