论文下载地址:https://arxiv.org/pdf/1809.08766v3.pdf
目录
提出目的和方法
提出目的
基于检测的人群计数,检测方法通常比以往的密度图人群计数技术提供更可靠的结果。因为在密度图的情况下,并不总是正确的位置会对最终的人群计数产生贡献。这导致了不可靠的结果,特别是在出现误报的情况下。
提出方法
提出了 FCHD(全卷积人头检测器),一个可端到端训练的人头检测模型。提出的架构是一个单一的全卷积网络,负责边界框预测和分类。模型在推理时间和内存需求上都较轻便。与运行时间相关,模型在平均准确度(AP)上表现更好,这得益于基于网络有效感受野选择锚点大小。
整体模型架构
Anchor Box尺度设计
训练方案以及anchor box的分配策略
GT Box和Anchor box之间的最佳匹配过程
难例挖掘(Hard Negative Mining)
论文Receptive Field Block Net for Accurate and Fast Object Detection详解(+代码详解)