【数据分析】Python实现模糊聚类(全源码)

        模糊聚类是机器学习中的一种聚类算法,它允许一个数据点以不同的隶属度属于多个聚类。与传统聚类(如K均值聚类)不同,在传统聚类中每个数据点只属于一个聚类。

        想象一下,你在一个聚会上,客人们根据共同的兴趣随意形成小组,比如音乐爱好者、美食爱好者和体育迷。有些人显然只适合一个小组,比如只谈论音乐的吉他手。但其他人可能属于多个小组,比如一个既喜欢音乐又喜欢美食的人,可以部分地同时属于这两个小组,而不是被迫只归入一个小组。         

模糊聚类流程

        模糊聚类遵循一个迭代优化过程,在这个过程中,数据点被分配隶属度值,而不是硬聚类标签。以下是它的工作原理的逐步分解:

步骤1:随机初始化隶属度值

        每个数据点都被赋予了所有聚类的隶属度。这些值表示该数据点属于每个聚类的概率。与硬聚类中一个点严格属于一个聚类不同,模糊聚类允许部分隶属。

        假设要将数据划分为2个聚类,随机初始化数据点。每个数据点以一定的隶属度同时属于两个聚类,在初始状态下这个隶属度可以假设为任意值。 下表表示数据点的值及其在每个聚类中的隶属度(γ)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值