目录
蒙特卡洛树搜索(MCTS)是一种启发式搜索算法,在人工智能领域尤其是决策和博弈领域备受推崇。该算法以处理复杂策略游戏著称,能有效应对传统算法难以解决的庞大搜索空间问题。
蒙特卡洛树搜索(MCTS)巧妙结合了基于随机采样的蒙特卡洛方法和树形搜索技术。与传统搜索算法需要遍历整个搜索空间不同,MCTS能够智能地聚焦于搜索空间中更具价值的区域进行采样探索。
蒙特卡洛树搜索(MCTS)的核心原理是通过对当前游戏状态进行大量随机模拟(称为rollouts或playouts)来构建搜索树。这些模拟持续进行直到游戏结束或达到预设深度,随后将模拟结果回传到搜索树中,更新每个经过节点的访问次数和胜率统计信息。
蒙特卡洛树搜索(MCTS)在搜索过程中动态平衡探索与利用。它既考虑选择当前胜率最高的走法,也会尝试探索较少被访问的路径。这种平衡机制通过置信区间上界(UCB)算法实现,其中树形置信区间上界(UCT)用于决定搜索过程中优先访问哪些节点。