【机器学习】蒙特卡洛树搜索原理(MCTS)

目录

为什么要使用蒙特卡洛树搜索(MCTS)?

蒙特卡洛树搜索的伪代码: 

蒙特卡洛树搜索的优点: 

蒙特卡洛树搜索的缺点: 

蒙特卡洛树搜索中的问题:


        蒙特卡洛树搜索(MCTS)是一种启发式搜索算法,在人工智能领域尤其是决策和博弈领域备受推崇。该算法以处理复杂策略游戏著称,能有效应对传统算法难以解决的庞大搜索空间问题。

        蒙特卡洛树搜索(MCTS)巧妙结合了基于随机采样的蒙特卡洛方法和树形搜索技术。与传统搜索算法需要遍历整个搜索空间不同,MCTS能够智能地聚焦于搜索空间中更具价值的区域进行采样探索。    

        蒙特卡洛树搜索(MCTS)的核心原理是通过对当前游戏状态进行大量随机模拟(称为rollouts或playouts)来构建搜索树。这些模拟持续进行直到游戏结束或达到预设深度,随后将模拟结果回传到搜索树中,更新每个经过节点的访问次数和胜率统计信息。

        蒙特卡洛树搜索(MCTS)在搜索过程中动态平衡探索与利用。它既考虑选择当前胜率最高的走法,也会尝试探索较少被访问的路径。这种平衡机制通过置信区间上界(UCB)算法实现,其中树形置信区间上界(UCT)用于决定搜索过程中优先访问哪些节点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值