一、单线激光雷达(2D激光雷达)
1. 基本定义与原理
- 定义:通过发射单一激光束,利用飞行时间法(TOF)或相位差法测量目标距离,形成二维平面扫描数据的传感器。
- 核心原理:
- 激光发射器发射脉冲激光,遇物体反射后被接收器捕获;
- 通过计算激光往返时间(Δt)或相位差(Δφ),结合光速(c)计算距离:
- 飞行时间法: 距离 = c × Δ t / 2 距离 = c \times Δt / 2 距离=c×Δt/2
- 相位差法: 距离 = ( c × Δ φ ) / ( 4 π f ) 距离 = (c \times Δφ) / (4πf) 距离=(c×Δφ)/(4πf)(f为调制频率)。
2. 结构组成
- 激光发射模块:单通道激光器(如905nm或1550nm半导体激光);
- 扫描模块:机械旋转式振镜或MEMS微振镜,实现水平方向360°扫描;
- 接收模块:单通道光电探测器(APD或SPAD);
- 信号处理单元:计算距离并生成二维点云数据。
3. 性能指标
- 扫描频率:通常10-100Hz(如10Hz时每秒扫描10圈);
- 测距范围:一般0.1-100米,高精度场景下可达200米以上;
- 角分辨率:典型值0.5°-1°(如10Hz时每圈扫描360-720个点);
- 数据量:每秒约数千至数万点(远低于多线雷达);
- 功耗:通常5-15W,体积小(如圆柱形直径5-10cm)。
4. 应用场景
- 服务机器人:扫地机器人(如iRobot Roomba)、配送机器人的避障与建图;
- 工业检测:流水线物体轮廓测量、二维障碍物检测;
- 农业与林业:作物高度监测、树木二维轮廓建模;
- 低速自动驾驶:园区接驳车、叉车的短距离环境感知。
5. 优缺点
- 优点:
- 成本极低(数百至数千元);
- 体积小、功耗低,易集成;
- 数据处理量小,对算力要求低。
- 缺点:
- 仅能获取二维平面数据,无法感知高度信息;
- 环境覆盖度差,复杂三维场景下易漏检(如悬空物体);
- 角分辨率低,难以识别细小障碍物。
二、多线激光雷达(3D激光雷达)
1. 基本定义与原理
- 定义:通过并行发射多束激光(如16/32/64/128线),形成三维空间扫描,生成高密度三维点云的传感器。
- 核心原理:
- 多束激光以不同垂直角度排列(如-15°至+15°),同时进行水平扫描;
- 每束激光独立测距,形成“垂直×水平”的三维点云矩阵,例如64线雷达每秒可产生数百万点。
2. 结构组成
- 激光发射模块:多通道激光器阵列(如64线雷达包含64个激光发射器);
- 扫描模块:
- 机械旋转式:传统方案(如Velodyne HDL-64E),通过电机带动整组发射/接收模块旋转;
- 混合固态式:MEMS振镜+多线激光(如禾赛Pandar系列);
- 全固态式:FMCW调频连续波+相控阵(如Innoviz Pro);
- 接收模块:多通道探测器阵列,与发射器一一对应;
- 信号处理单元:高速FPGA/ASIC芯片,处理海量点云数据。
3. 性能指标
- 线数:常见16/32/64/128线(如Velodyne Alpha Puck为128线);
- 垂直视场角:典型值-40°至+15°(如64线雷达垂直视场约55°);
- 点云密度:每平方米点云数可达数百点(如128线雷达在10米处点间距约1cm);
- 测距范围:通常0.1-200米,1550nm激光可达500米以上(如Luminar Iris);
- 数据量:每秒数千万至数亿点(如64线雷达@10Hz时约1.3M点/秒);
- 功耗:20-100W,体积较大(机械旋转式直径约10-20cm,高度15-30cm)。
4. 应用场景
- 自动驾驶:L4/L5级无人车(如Waymo、特斯拉FSD早期方案)的环境感知;
- 智能交通:高速公路车流监测、路口三维建模;
- 测绘与建模:城市三维地图(如百度地图、腾讯地图的激光雷达采集车)、建筑BIM模型;
- 无人机与机器人:物流无人机避障、矿山/隧道三维勘探;
- 安防监控:周界入侵检测、复杂地形目标追踪。
5. 优缺点
- 优点:
- 三维环境全覆盖,可识别物体高度、形状及空间位置;
- 点云密度高,可精确区分行人、车辆、障碍物等细节;
- 测距精度高(通常±2cm),适应恶劣光照环境(如黑夜、强光)。
- 缺点:
- 成本高昂(机械旋转式64线雷达售价曾超1万美元,现固态方案降至数千美元);
- 体积与功耗较大,车载安装需考虑空间与散热;
- 机械部件易损耗(传统旋转式寿命约1万小时),固态方案可靠性更高。
三、单线与多线激光雷达对比表
维度 | 单线激光雷达 | 多线激光雷达 |
---|---|---|
线数 | 1线 | 16/32/64/128线等 |
扫描维度 | 2D平面(水平方向360°) | 3D空间(水平+垂直立体扫描) |
点云数据 | 二维点云(仅X-Y坐标) | 三维点云(X-Y-Z坐标+反射强度) |
环境感知 | 仅能识别平面障碍物 | 可识别三维物体(如行人、路灯、高架桥) |
测距精度 | 通常±5-10cm | 通常±2-5cm(高线数方案更高) |
典型成本 | 数百-数千元人民币 | 数千元-数十万元人民币(取决于线数) |
典型应用 | 扫地机器人、工业二维检测 | 自动驾驶、三维测绘、无人机避障 |
代表产品 | 思岚科技RPLIDAR、Hokuyo UTM-30LX | Velodyne HDL-64E、禾赛Pandar128、Luminar Iris |
四、技术发展与趋势
-
多线激光雷达的演进:
- 机械旋转式:早期主流方案(如2010年Velodyne推出64线雷达),但体积大、成本高;
- 半固态式:用MEMS振镜或转镜替代全机械旋转(如禾赛Pandar系列),降低体积与成本;
- 全固态式:无机械部件,采用相控阵(Phased Array)或Flash激光面阵(如Innoviz、Ouster),适合车规级量产;
- FMCW调频连续波:替代TOF测距,抗干扰能力更强(如Luminar、华为96线雷达)。
-
成本下降趋势:
- 2015年64线雷达售价约8万美元,2025年固态128线雷达预计降至1000美元以下;
- 半导体工艺进步(如激光二极管阵列集成、CMOS工艺探测器)推动成本优化。
-
与其他传感器的融合:
- 多线激光雷达与摄像头、毫米波雷达、惯导组合,形成“冗余感知”(如特斯拉2023年Optimus机器人方案);
- 单线雷达常与视觉传感器结合,用于低成本机器人导航(如亚马逊仓库机器人)。
五、典型产品与厂商
-
单线激光雷达:
- 思岚科技(RPLIDAR系列,售价约1000元);
- Hokuyo(UTM-30LX,售价约5000元);
- 大疆(禅思L1,单线+IMU,用于无人机测绘)。
-
多线激光雷达:
- Velodyne(Alpha Puck 128线,售价约5000美元);
- 禾赛科技(Pandar128,128线固态,售价约1万美元);
- Luminar(Iris,1550nm 128线,车规级,售价约1000美元);
- 华为(AT128,96线固态,用于极狐阿尔法S华为版)。
六、总结
单线激光雷达以低成本和轻量化优势主导二维场景,而多线激光雷达凭借三维环境感知能力成为自动驾驶、高精度测绘的核心传感器。随着固态技术成熟与成本下降,多线激光雷达正从高端应用向消费级场景渗透,未来将与视觉、毫米波等传感器深度融合,推动智能装备的环境感知能力升级。