pytorch 快速测试网络结构

该博客展示了如何在PyTorch中使用GhostNet模型进行前向传播。首先,它导入了torch库,然后定义并评估了模型。接着,创建了一个随机输入张量,通过模型得到输出,并打印了输出的尺寸,这表明了模型的处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模拟网络的输入,然后在run.py文件中导入相应的包。

# run.py 
import torch
if __name__=='__main__':
    model = ghostnet()
    model.eval()
    print(model)
    input = torch.randn(32,3,320,256)
    y = model(input)
    print(y.size())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nachifur

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值