图神经网络用于推荐系统问题(SURGE,GMCF,TASRec,MixGCF)

本篇文章继续整理这个系列Graph in Rec 的文章,以前博主整理过的系列可以见:

这次更新最近SIGIR2021,博主自己刷过觉得还不错的几篇文章。分搜索和推荐两篇博文整理吧,这篇是关于推荐的三篇文章。

在这里插入图片描述
Sequential Recommendation with Graph Neural Networks
这篇文章是做序列推荐的文章。motivation首先是

  • 1序列中的行为往往是隐式的、有噪声的偏好信号,它们不能充分反映用户的实际偏好。
  • 2用户的动态偏好随着时间的推移而迅速变化,因此很难在其历史序列中捕获用户模式。

因此作者提出SURGE,模型图如上,也挺清晰的架构。具体来说,SURGE

  • Interest Graph Construction。将每个交互序列重新构造为一个兴趣图,如上图a。通过基于度量学习将松散的项目序列重新构建为紧密的项目-项目兴趣图,可以明确地整合和区分长期行为中不同类型的偏好。其中这里的重构是基于度量学习的cos来计算的: M i j = c o s ( w ⊙ h i , w ⊙ h j ) M_{ij}=cos(w \odot h_i,w \odot h_j) Mij=cos(whi,whj)其中w是权重,i,j是item的特征。然后对这个M值卡一个阈值来进行图的连边稀疏化。
  • Interest-fusion Graph Convolutional Layer。对图动态进行兴趣融合,如上图b。在所构造的兴趣图上的卷积传播动态地融合了用户的兴趣,加强了重要的行为,减弱了噪声的行为。这里在聚合的时候会使用Cluster- and query-aware attention两种attention。
  • Interest-extraction Graph Pooling Layer。对图动态进行兴趣提取,如上图b。考虑到用户在不同时刻的不同偏好,进行了动态图池操作,以合理地缩小图的大小。通过对所构造的图结构的粗化,将松散兴趣转化为紧兴趣(核心偏好),并保持其分布。
  • Prediction Layer。进一步的建模和预测,如上图d。在合并后的图被压缩成简化的序列后,对增强的兴趣信号的演化进行建模,并预测下一个项目。

在这里插入图片描述
Neural Graph Matching based Collaborative Filtering
这篇文章探讨user和item的属性相互,它们的交互作用(即在样本数据中的共现)可以显著提高各种推荐系统中的预测精度。作者任务交互分为两种:inner interactions内部交互–是仅用户属性之间或仅项目属性之间的交互;cross interactions交叉交互–是用户属性和项目属性之间的交互。但是,现有的模型并没有区分这两种类型的属性交互,这种对属性交互类型的不认识不可避免地限制了现有工作的联合决策能力。

因此,作者提出GMCF,即同时考虑这两种类型。这会是一种符合推荐系统目标的方式来考虑属性交互:学习用户和项目特征(通过图形学习),并根据用户的特征(通过图形匹配)来匹配用户对项目的偏好。如上图是作者画的区别图,左边GMCF是作者提出的模型,而右边的是现有工作范式。GMCF在图匹配结构中不同地对待属性交互,而现有的工作则平等地对待所有属性交互。模型图如下:
在这里插入图片描述
具体来说分为三个模块,

  • Graph Construction。将每个用户和每个项表示为一个属性图,每个属性都是一个节点,每个成对的属性内部交互都是一条边。
  • Node Matching based
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值