ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge
- paper:https://arxiv.org/pdf/2303.14070.pdf
通用领域中最近的大型语言模型 (LLM),例如 ChatGPT,在遵循指令和产生类似人类的响应方面取得了显着的成功。 但是语言模型并未针对医学领域量身定制,导致答案准确性较差,无法为医学诊断、药物治疗等提供合理的建议。
因此这篇文章收集了一些关于医学领域的数据集,然后基于Meta的LLaMA进行微调(毕竟chatGPT非开源)。不仅是医学领域,这篇文章的做法可以扩展到很多其他的专有领域中。
在医疗领域,通过利用医患对话数据对大模型进行微调,可以显著促进该模型在医学领域的应用。特别是在医疗资源匮乏的地区,可以使用聊天医生来支持患者的初步诊断和分诊,可以显著提高现有医疗系统的效率。
数据集
由通用数据集(掌握对话能力)和医患对话数据集(保障领域质量)组成。
- 通用数据集自然是Stanford Alpaca,52K instruction-following的数据。
- 作者们收集的InstructorDoctor-205k数据集,其中包含5000个生成的医患对话和20万个真实的医患对话,以保障准确性和多样性,以用于对大型语言模型进行微调。
-
- 5000 次医患对话。包括700多种疾病及其相应的症状、所需的医学检查和推荐的药物。同时,为了提高数据和模型质量,疾病数据库中的元组(疾病的名称、相应的症状等等)将被输入到ChatGPT API中以自动生成指令和对话数据,即生成患者和医生之间的对话。