ChatDoctor(LLM大模型用于医疗对话)

文章介绍了ChatDoctor,这是一个基于LLaMA的大规模语言模型,通过医学领域数据微调,专门用于提供医疗咨询。使用医患对话数据集InstructorDoctor-205k进行训练,提高了模型在医学诊断和建议方面的准确性。此外,还讨论了训练参数和数据来源,包括真实和生成的医患对话,旨在增强模型理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge

  • paper:https://arxiv.org/pdf/2303.14070.pdf

通用领域中最近的大型语言模型 (LLM),例如 ChatGPT,在遵循指令和产生类似人类的响应方面取得了显着的成功。 但是语言模型并未针对医学领域量身定制,导致答案准确性较差,无法为医学诊断、药物治疗等提供合理的建议。

因此这篇文章收集了一些关于医学领域的数据集,然后基于Meta的LLaMA进行微调(毕竟chatGPT非开源)。不仅是医学领域,这篇文章的做法可以扩展到很多其他的专有领域中。

在医疗领域,通过利用医患对话数据对大模型进行微调,可以显著促进该模型在医学领域的应用。特别是在医疗资源匮乏的地区,可以使用聊天医生来支持患者的初步诊断和分诊,可以显著提高现有医疗系统的效率。

在这里插入图片描述

数据集
由通用数据集(掌握对话能力)和医患对话数据集(保障领域质量)组成。

  • 通用数据集自然是Stanford Alpaca,52K instruction-following的数据。
  • 作者们收集的InstructorDoctor-205k数据集,其中包含5000个生成的医患对话和20万个真实的医患对话,以保障准确性和多样性,以用于对大型语言模型进行微调。
    • 5000 次医患对话。包括700多种疾病及其相应的症状、所需的医学检查和推荐的药物。同时,为了提高数据和模型质量,疾病数据库中的元组(疾病的名称、相应的症状等等)将被输入到ChatGPT API中以自动生成指令和对话数据,即生成患者和医生之间的对话。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值