对偶性与KKT条件

本文介绍了对偶问题优化,包括原始优化问题和对偶优化问题,强调了KKT条件在等式和不等式约束优化问题中的重要作用。通过实例展示了如何使用广义拉格朗日乘数法求解问题,并探讨了原始问题与对偶问题的关系及其解的等价性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在**上一篇文章中,笔者介绍了什么是拉格朗日乘数法以及它的作用。同时在那篇文章中笔者还特意说到,拉格朗日乘数法只能用来求解等式约束条件下**的极值。但是当约束条件为不等式的时候我们又该如何求解呢?

1 广义拉格朗日乘数法

由拉格朗日乘数法可知,对于如下等式条件的约束问题
min ⁡ w        f ( w ) s . t .        h i ( w ) = 0 , i = 1 , ⋯   , l . (1) \begin{aligned} \min_{w} \;\;\;f(w)&\\ s.t. \;\;\;h_i(w)&=0,i=1, \cdots,l. \end{aligned}\tag 1 wminf(w)s.t.hi(w)=0,i=1,,l.(1)
其中 w w w是一个向量​。

很明显这是一个条件(等式)极值问题,且用拉格朗日乘数法就能解决:
L ( w , β ) = f ( w ) + ∑ i = 1 l β i h i ( w ) (2) \mathcal{L}(w,\beta) = f(w)+\sum^l_{i=1}\beta_ih_i(w)\tag 2 L(w,β)=f(w)+i=1lβihi(w)(2)
其中 β i \beta_i βi是拉格朗日乘子;然后对式子中所有的参数求偏导,令其为0便可求解出所有参数。

接着看如下优化问题

min ⁡ w        f ( w ) s . t .        g i ( w ) ≤ 0 , i = 1 , ⋯   , k . h i ( w ) = 0 , i = 1 , ⋯   , l . (3) \begin{aligned} \min_{w} \;\;\;f(w)&\\ s.t. \;\;\;g_i(w)&\leq0,i=1, \cdots,k.\\[2ex] h_i(w)&=0,i=1, \cdots,l. \end{aligned}\tag 3 wminf(w)s.t.gi(w)hi(w)0,i=1,,k.=0,i=1,,l.(3)
与之前明显不同的就是在这个问题中多了不等式的约束条件。因此,为了解决这个问题我们就要定义广义的拉格朗日乘数法(Generalized Lagrangian)。
L ( w , α , β ) = f ( w ) + ∑ i = 1 k α i g i ( w ) + ∑ i = 1 l β i h i ( w ) (4) \mathcal{L}(w,\alpha,\beta) = f(w)+\sum^k_{i=1}\alpha_ig_i(w)+\sum^l_{i=1}\beta_ih_i(w)\tag 4 L(w,α,β)=f(w)+i=1kαigi(w)+i=1lβihi(w)(4)
其中 α i \alpha_i αi β i \beta_i βi都是拉格朗日乘子,但接下来的求解过程与之前就大相径庭了。

2 对偶问题优化

2.1 原始优化问题

根据式子 ( 3 ) ( 4 ) (3)(4) (3)(4)我们考虑如下定义:
θ P ( w ) = max ⁡ α , β : α i ≥ 0 L ( w , α , β ) (5) \theta_{\mathcal{P}}(w)=\max_{\alpha,\beta:\alpha_i\geq0}\mathcal{L}(w,\alpha,\beta)\tag 5 θP(w)=α,β:αi0maxL(w,α,β)(5)
这个式子表示的含义是:最大化 L ( ω , α , β ) \mathcal{L}(\omega,\alpha,\beta) L(ω,α,β) α , β \alpha,\beta α,β的取值,即 α , β \alpha,\beta α,β作为自变量与 w w w无关,最终求得的结果 θ P \theta_{\mathcal{P}} θP是关于 w w w的函数;其中 α i ≥ 0 \alpha_i\geq0 αi0是为了在 L ( w , α , β ) \mathcal{L}(w,\alpha,\beta) L(w,α,β)中保证约束条件 g i ( w ) ≤ 0 g_i(w)\leq 0 gi(w)0始终成立。

因此,如果原约束条件 g i ( w ) ≤ 0 g_i(w)\leq0 gi(w)0 h i ( w ) = 0 h_i(w)=0 hi(w)=0均成立,那么:
max ⁡ α , β : α i ≥ 0 L ( w , α , β )    ⟺    max ⁡ α , β : α i ≥ 0 [ ∑ i = 1 k α i g i ( w ) + ∑ i = 1 l β i h i ( w ) ] (6) \max_{\alpha,\beta:\alpha_i\geq0}\mathcal{L}(w,\alpha,\beta)\iff\max_{\alpha,\beta:\alpha_i\geq0}\left[\sum^k_{i=1}\alpha_ig_i(w)+\sum^l_{i=1}\beta_ih_i(w)\right]\tag 6 α,β:αi0maxL(w,α,β)α,β:αi0max[i=1kαigi(w)+i=1lβihi(w)](6)
则此时有 θ P ( w ) = f ( w ) + 0 \theta_{\mathcal{P}}(w)=f(w)+0 θP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值