多标签分类中的损失函数与评估指标

本文详细介绍了多标签分类任务中两种常见的损失函数:sigmoid交叉熵和拓展版交叉熵,并提供了相应的Python代码实现。此外,还讨论了多标签分类的评估指标,包括绝对匹配率、精确率、召回率、F1值和Hamming Loss,阐述了它们的计算方法和适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位朋友大家好,欢迎来到月来客栈。由于公众号推文不支持后续修订, 所以本文将同步推送至网站www.ylkz.life,欢迎大家关注!

1 引言

前面的一篇文章[1]中笔者介绍了在单标签分类问题中模型损失的度量方法,即交叉熵损失函数。同时也介绍了多分类任务中常见的评价指标及其实现方法[2]。在接下来的这篇文章中,笔者将会详细介绍在多标签分类任务中两种常见的损失评估方法,以及在多标签分类场景中的模型评价指标。

2 方法一

将原始输出层的softmax操作替换为simoid操作,然后通过计算输出层与标签之间的sigmoid交叉熵来作为误差的衡量标准,具体计算公式如下:
l o s s ( y , y ^ ) = − 1 C ∑ i = 1 m [ y ( i ) ⋅ log ⁡ ( 1 1 + exp ⁡ ( − y ^ ( i ) ) ) + ( 1 − y ( i ) ) ⋅ log ⁡ ( exp ⁡ ( − y ^ ( i ) ) 1 + exp ⁡ ( − y ^ ( i ) ) ) ]            ( 1 ) loss(y,\hat{y})=-\frac{1}{C} \sum_{i=1}^m\left[y^{(i)}\cdot\log\left(\frac{1}{1+\exp(-\hat{y}^{(i)})}\right)+\left(1-y^{(i)}\right)\cdot\log\left(\frac{\exp(-\hat{y}^{(i)})}{1+\exp(-\hat{y}^{(i)})}\right)\right]\;\;\;\;\;(1) loss(y,y^)=C1i=1m[y(i)log(1+exp(y^(i))1)+(1y(i))log(1+exp(y^(i))exp(y^(i)))](1)
其中 C C C表示类别数量, y ( i ) y^{(i)} y(i) y ^ ( i ) \hat{y}^{(i)} y^(i)均为一个向量,分别用来表示真实标签和未经任何激活函数处理的网络输出值。

从式 ( 1 ) (1) (1)可以发现,这种误差损失衡量方式其实就是在逻辑回归中用来衡量预测概率与真实标签之间误差的方法。

2.1 numpy实现:

根据式 ( 1 ) (1) (1)的计算公式,可以通过如下Python代码来完成损失值的计算:

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def compute_loss_v1(y_true, y_pred):
    t_loss = y_true * np.log(sigmoid(y_pred)) + \
             (1 - y_true) * np.log(1 - sigmoid(y_pred))  # [batch_size,num_class]
    loss = t_loss.mean(axis=-1)  # 得到每个样本的损失值, 这里可以是
    return -loss.mean()  # 返回整体样本的损失均值(或其他)

if __name__ == '__main__':
    y_true = np.array([[1, 1, 0, 0], [0, 1, 0, 1]])
    y_pred = np.array([[0.2, 0.5, 0, 0], [0.1, 0.5, 0, 0.8]])
    print(compute_loss_v1(y_true, y_pred)) # 0.5926

当然,在TensorFlow 1.xPytorch中也分别对这两种方法进行了实现。

2.2 TensorFlow实现

Tensorflow 1.x中,可以通过tf.nn模块下的sigmoid_cross_entropy_with_logits方法进行调用:

def sigmoid_cross_entropy_with_logits(labels, logits):
    loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
    loss = tf.reduce_mean(loss, axis=-1)
    return tf.reduce_mean(loss)

if __name__ == '__main__':
    y_true = tf.constant([[1, 1, 0, 0], [0, 1, 0, 1]],dtype=tf.float16)
    y_pred = tf.constant([[0.2, 0.5, 0, 0], [0.1, 0.5, 0, 0.8]],dtype=tf.float16)
    with tf.Session() as sess:
        loss = sess.run(sigmoid_cross_entropy_with_logits(y_true,y_pred))
        print(loss) # 0.5926

当然,在模型训练完成后,可以通过如下代码来得到预测的标签结果和相应的概率值:

def prediction(logits, K):
      y_pred = np.argsort(-logits, axis=-1)[:,:K]
    print("预测标签:",y_pred)
    p = np.vstack([logits[r,c] for r,c in enumerate(y_pred)])
    print("预测概率:",p)

prediction(y_pred,2)
#####
预测标签:
[[1 0]
 [3 1]]
预测概率: 
[[0.5 0.2]
 [0.8 0.5]]
2.3 Pytorch实现

Pytorch中,可以通过torch.nn模块中的MultiLabelSoftMarginLoss类来完成损失的计算:

if __name__ == '__main__':
    y_true = torch.tensor([[1, 1, 0, 0], [0, 1, 0, 1]],dtype=torch.int16)
    y_pred = torch.tensor([[0.2, 0.5, 0, 0], [0.1, 0.5, 0, 0.8]],dtype=torch.float32)
    loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
    print(loss(y_pred, y_true)) #0.5926

同样,在模型训练完成后也可以通过上面的prediction函数来完成推理预测。需要注意的是,在TensorFlow 1.xsigmoid_cross_entropy_with_logits方法返回的是所有样本损失的均值;而在Pytorch中,MultiLabelSoftMarginLoss默认返回的是所有样本损失的均值,但是可以通过指定参数reductionmeansum来指定返回的类型。

3 方法二

在衡量多标签分类结果损失的方法中,除了上面介绍的方法一之外还有一种常用的损失函数。这种损失函数其实就是我们在单标签分类中用到的交叉熵损失函数的拓展版,单标签可以看作是其中的一种特例情况。其具体计算公式如下所示:
l o s s ( y , y ^ ) = − 1 m ∑ i = 1 m ∑ j = 1 q y j ( i ) log ⁡ y ^ j ( i )                      ( 2 ) loss(y,\hat{y})=-\frac{1}{m}\sum_{i=1}^m\sum_{j=1}^qy^{(i)}_j\log{\hat{y}^{(i)}_j}\;\;\;\;\;\;\;\;\;\;(2) loss(y,y^)=m1i=1mj=1q<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值