YOLOv8改进,YOLOv8添加MLCA注意力机制(混合局部信道注意)


在这里插入图片描述

原论文摘要

注意力机制是计算机视觉中最广泛使用的组件之一,能够帮助神经网络突出重要元素并抑制不相关的部分。然而,大多数通道注意力机制只包含通道特征信息,忽略了空间特征信息,导致模型的表示效果较差或目标检测性能不佳,并且空间注意力模块往往复杂且代价高昂。为了在性能和复杂性之间取得平衡,本文提出了一种轻量级的混合局部通道注意力(MLCA)模块,以提高目标检测网络的性能。该模块能够同时结合通道信息和空间信息,以及局部信息和全局信息,从而提升网络的表示效果。

MLCA介绍

MLCA是一种即插即用的可扩展混合局部注意力机制,以在检测效果、速度和模型参数数量之间实现平衡,并使注意力机制同时包含通道信息、空间信息、局部通道信息和全局通道信息。
具体来说:
1.局部性:关注特征图的局部区域,而非全局特征,避免无关区域的干扰。
2.通道性:同时对不同的通道进行加权,以突出最相关的特征。
3.混合性:将局部通道注意力与全局注意力或其他类型的注意力结合,增强模型的表达能力。
混合局部信道注意(MLCA)结构图如下:
在这里插入图片描述

MLCA理论详解可以参考链接:论文地址
MLCA代码可在这个链接找到:代码地址

本文在YOLOv8中引入轻量级的MLCA(混合局部信道注意),代码已经整理好了,跟着文章复制粘贴,即可直接运行


### 关于 MLCA 注意力机制的研究 MLCA(Multi-Level Context-Aware Attention Mechanism)是一种多级上下文感知注意力机制,广泛应用于自然语言处理、计算机视觉等领域。它通过多层次的信息提取和融合来增强模型对重要特征的关注能力[^1]。 为了查找与 MLCA 注意力机制相关的学术资源,可以尝试以下方法: #### 方法一:搜索引擎高级查询 利用 Google Scholar 或其他学术搜索引擎进行精确检索。以下是推荐的搜索关键词组合: - `MLCA attention mechanism site:edu` 此命令会优先返回来自教育机构网站上的相关内容。 - `MLCA attention mechanism filetype:pdf` 该指令限定只显示 PDF 文件格式的结果,适合快速获取可下载的技术文档或论文。 #### 方法二:访问权威数据库 除了通用搜索引擎外,还可以直接查阅知名科研平台中的资料库,例如 ScienceDirect, IEEE Xplore Digital Library 和 arXiv.org。这些平台上通常收录高质量同行评议文章以及预印本研究材料。 下面是一份基于 Python 的脚本来演示如何自动化抓取部分公开可用的数据源链接作为参考起点之一: ```python import requests from bs4 import BeautifulSoup def search_mlca_papers(): base_url = "https://scholar.google.com/scholar?q=" query = 'MLCA+attention+mechanism' response = requests.get(f"{base_url}{query}") soup = BeautifulSoup(response.content,'html.parser') results = [] items = soup.find_all('div', class_='gs_r gs_or gs_scl') for item in items[:5]: title_tag = item.select_one('.gs_rt a') link = title_tag['href'] if title_tag else '' snippet_div = item.select_one('.gs_rs') abstract = snippet_div.text.strip() if snippet_div else '' result_info = { "title": title_tag.text, "link": link, "abstract": abstract } results.append(result_info) return results papers = search_mlca_papers() for idx,paper in enumerate(papers): print(f"\nPaper {idx+1}:") print("- Title:",paper["title"]) print("- Link:",paper["link"]) print("- Abstract:\n",paper["abstract"][:200]+"...") ``` 上述代码片段展示了怎样构建一个简单的爬虫程序去收集前五篇匹配到的文章基本信息并打印出来供进一步分析使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挂科边缘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值