代码训练LeetCode(20)跳跃游戏

代码训练(20)LeetCode之跳跃游戏

Author: Once Day Date: 2025年6月3日

漫漫长路,才刚刚开始…

全系列文章可参考专栏: 十年代码训练_Once-Day的博客-CSDN博客

参考文章:

1. 原题

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false

提示:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
2. 分析

这是一个典型的贪心算法问题。我们可以维护一个变量 maxReach 来记录从数组开始到当前位置所能跳到的最远距离。遍历数组,对于每个位置,我们更新 maxReach。如果在某个位置 imaxReach 小于 i,说明无法跳过当前位置,因此也就无法到达数组末尾。如果遍历结束后,maxReach 至少和数组的最后一个位置相等或更远,那么就可以到达数组最后。

分析步骤:

(1)初始化 maxReach 为 0。

(2)遍历数组

  • 如果当前位置 i 大于 maxReach,说明无法到达位置 i,返回 false。
  • 否则,更新 maxReach = max(maxReach, i + nums[i])

(3)检查 maxReach 是否大于等于数组的最后一个位置的下标,如果是,返回 true,否则返回 false。

举例分析

nums = [2,3,1,1,4] 为例:

  • 初始 maxReach = 0
  • i = 0, maxReach = max(0, 0 + 2) = 2
  • i = 1, maxReach = max(2, 1 + 3) = 4(数组长度为 5,已经可以覆盖到最后)
  • 由于 maxReach 大于数组长度减一,返回 true。

性能优化关键点

  • 时间复杂度:O(n),因为只需要遍历数组一次。
  • 空间复杂度:O(1),只使用了常数级的额外空间。
3. 代码实现
#include <stdbool.h>

bool canJump(int* nums, int numsSize) {
    int maxReach = 0;
    for (int i = 0; i < numsSize; i++) {
        if (i > maxReach) {
            return false;
        }
        maxReach = maxReach > i + nums[i] ? maxReach : i + nums[i];
    }
    return maxReach >= numsSize - 1;
}

这段代码实现了"跳跃游戏"(Jump Game)问题的解决方案,使用贪心策略。

4. 总结

通过这个题目,我们可以学习到贪心算法的基本应用,即每一步都做局部最优的选择,希望这能带来全局最优的解决方案。这类问题通常涉及到对数组的单次遍历,并通过更新状态变量来达到问题的解决。在解决类似问题时,我们应该考虑是否可以通过维护一个或多个状态变量来简化问题的复杂性,从而达到时间和空间的优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值