对于离散型随机变量X求期望
P{X=xk}=pkP{X=xk}=pk
则:
E(x)=∑1∞xkpkE(x)=∑1∞xkpk
如果有一个随机变量Y是关于X的函数Y=g(x)Y=g(x),则Y的期望为:
E(Y)=E(g(x))=∑0∞g(x)pkE(Y)=E(g(x))=∑0∞g(x)pk
对于连续型随机变量的期望:
E(X)=∫∞−∞xf(x)dxE(X)=∫−∞∞xf(x)dx
对于一个随机变量Y=g(x)有
E(Y)=∫∞−∞g(x)f(x)dxE(Y)=∫−∞∞g(x)f(x)dx
对于一些常见的函数:
g(X)=CX,g(X)=X+X2g(X)=CX,g(X)=X+X2等有一些定理:
1.E(C)=CE(C)=C
2.E(CX)=CE(X)E(CX)=CE(X)
3.E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
4.对于两个独立变量
E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)