概率论-期望

对于离散型随机变量X求期望

P{X=xk}=pkP{X=xk}=pk

则:
E(x)=1xkpkE(x)=∑1∞xkpk

如果有一个随机变量Y是关于X的函数Y=g(x)Y=g(x),则Y的期望为:
E(Y)=E(g(x))=0g(x)pkE(Y)=E(g(x))=∑0∞g(x)pk

对于连续型随机变量的期望:

E(X)=xf(x)dxE(X)=∫−∞∞xf(x)dx

对于一个随机变量Y=g(x)有
E(Y)=g(x)f(x)dxE(Y)=∫−∞∞g(x)f(x)dx

对于一些常见的函数:
g(X)=CX,g(X)=X+X2g(X)=CX,g(X)=X+X2等有一些定理:

1.E(C)=CE(C)=C
2.E(CX)=CE(X)E(CX)=CE(X)
3.E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y)
4.对于两个独立变量
E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值