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Abstract. We propose Neural Graph Matching (NGM) Networks, a
novel framework that can learn to recognize a previous unseen 3D action
class with only a few examples. We achieve this by leveraging the inherent
structure of 3D data through a graphical representation. This allows
us to modularize our model and lead to strong data-efficiency in few-
shot learning. More specifically, NGM Networks jointly learn a graph
generator and a graph matching metric function in an end-to-end fashion
to directly optimize the few-shot learning objective. We evaluate NGM
on two 3D action recognition datasets, CAD-120 and PiGraphs, and
show that learning to generate and match graphs both lead to significant
improvement of few-shot 3D action recognition over the holistic baselines.

1 Introduction

Recent availability of commodity depth sensors has provided new ways to capture
3D data, but labeled depth datasets are scarce, making it difficult to transfer
the success of deep learning techniques from the RGB domain [1, 2]. This is
especially true for videos, where the difficulty and cost of labelling has already
been a roadblock for collecting RGB video datasets [3, 4]. One possible approach
is to use self-supervised [5, 6] or unsupervised learning [7] for learning a 3D data
representation that serves as an efficient model initialization for the tasks of
interest. While such methods have been successfully applied to RGB-D action
recognition [5] and 3D scene labeling [7], we argue that it does not fully utilize
the labeled 3D datasets that are readily available [8–11].

In this work, we introduce few-shot learning [12] to 3D action recognition,
where the model is explicitly trained to deal with scarce training data for previ-
ously unseen classes. This is in contrast to representation learning approaches,
where the model is not informed with the task of interest. While recent works
have addressed few-shot learning in the RGB domain [13, 14, 12], adapting these
method to the 3D space is a non-trivial task. Unlike the images, where effective
RGB representations exist (i.e., ImageNet [15] pretrained CNN), its counterpart
in 3D video is still an open research problem [16–18]. As we will show in our
experiments, direct application of few-shot learning to the existing 3D represen-
tation does not lead to effective generalization to novel classes.
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Fig. 1. The proposed Neural Graph Matching Networks is able to recognize a previously
unseen action class with only a few examples. We achieve this by leveraging the spatial
information inherent in the 3D data. As shown in the figure, the query video (middle)
is visually similar to the video of a different class (top), which can confuse holistic
approaches. However, NGM is able to leverage the graphical representation and match
the query to the video with the correct class (bottom).

Our key observation to resolve this challenge is that there is inherent struc-
ture in 3D data that can be naturally leveraged to provide modularity for our
representation, and thus lead to more effective few-shot learning. Modularity and
compositionality has been shown to be effective for improving data efficiency in
visual question answering [19–21]. As shown in Figure 1, visually diverse actions
of the same class can be correlated by their underlying structure.

With these insights, we propose Neural Graph Matching (NGM) Networks,
a novel graph-based approach that learns to generate and match graphs for few-
shot 3D action recognition. NGM consists of two stages that can be trained
jointly in an end-to-end fashion. The first stage is graph generation, where we
leverage the 3D spatial information of the environment captured by the 3D data
to generate the intermediate graphical representation, or the interaction graph.
For each action, the graph uses nodes to represent physical entities in a 3D
scene (e.g. body parts, objects) and edges to represent the interactions between
the entities (e.g. touch, gaze) [22]. This graphical structure allows us to better
model both the spatial relationship between human and objects and to capture
the temporal evolution of videos, while also using stronger data efficiency in the
few-shot setting. The second stage is graph matching, where we learn on the
graph-based matching function as a metric to enable few-shot training on the
generated interaction graph. In this way, NGM automatically learns in an end-
to-end fashion both the graphical representation of the 3D environment and the
graph matching metric function that are best suited for few-shot learning of novel
3D action classes. This is in contrast to holistic-based approaches [16–18, 23],
where the high-dimensional input is directly mapped to a feature representation
without explicitly leveraging any spatial information captured by the 3D data.
For example, PointNet [18] processes permutation and geometric invariant point
clouds, holistically processing the scene’s point-representation.
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Fig. 2. CAD-120 Point Clouds. We evaluate NGM on the CAD-120 dataset, which
contains RGB-D videos of everyday actions. We visualize single point cloud frames
where each point is the 3-D projected (xi, yi, zi) of the corresponding depth frame.

We evaluate few-shot learning of Neural Graph Matching Networks on two 3D
action datasets: CAD-120 [9] (Figure 2) and PiGraphs [22]. We show that when
there is only a single example available, NGM is able to outperform the holistic
baseline up to 20% by explicitly leveraging 3D spatial information. In addition,
we show that the proposed end-to-end framework is able to learn meaningful
graph generations and matching metrics that perform significantly better than
heuristically generated edges.

To summarize our main contributions, we: (i) introduce the few-shot learning
task for 3D action recognition to address the challenge of scarce training data
compared to 2D; (ii) propose the use of graphical representations to explicitly
leverage the spatial information in 3D data; (iii) present Neural Graph Match-
ing Networks, a novel framework that learns to jointly generate and match the
graphical representation in an end-to-end fashion, which leads to stronger data
efficiency for 3D few-shot learning.

2 Related Work

Few-shot Learning. Few-shot learning and similar concepts have been exam-
ined thoroughly in past literature. Many of these works cover the use of holistic
based approaches [13, 24–26, 14, 12]. Vinyals et al. [12] uses matching networks
to perform one-shot learning, casting set-to-set test labels for unobserved classes
using k-nearest neighbors with cosine distance. Snell et al. [14] carries along this
approach using euclidean distance and creating a prototypical representation of
each class. Both approaches use a holistic approach, where raw input and label
pairs which are fed into the network without leveraging structural data. Also,
both works use a fixed similarity metric in that only certain distance computa-
tions are used for the K-NN classification. Further works have introduced other
techniques for learned similarity metrics. Santoro et al. [26] explores the topic
of relational reasoning, where a module learns a relation between two objects
within the relation network using MLPs and and synaptic weights.

3D Action Recognition. Traditional 3D action recognition approaches rely
on hand-crafted features, such as HON4D [27] and HOPC [28] to capture the
spatial-temporal information. One dominant alternative is the skeleton based
approaches [29, 30], where the video is represented as a sequence of joint posi-
tions. Recent 3D action recognition approaches utilize skeletal pose or temporal
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features that are typically fed into a combination of convolutional and recur-
rent networks[31–33]. Part-aware LSTMs have been explored for RGB-D action
recognition; however the focus there is on nodes instead of graphs. While most 3D
action recognition approaches are designed for supervised learning, addressing
3D action recognition for the few-shot setting has been relatively unexplored.

Modularity and Compositionality. Modular approaches have been shown
important for data efficiency in visual understanding. One example is the visual
question answering problem [20, 21]. Our work is tied to compositionality, where
a set of entities and there interactions are used to describe the action. Ikizler
et al. [34] describes an approach of breaking down movements per body part
to compose a larger activity description task. Gu et al. [35] outlines a distinct
approach towards compositionality, using action primitives to describe an action
instead of body parts. Other representations include: scene graphs for objects
and relationships in a 2D scene [36], and interaction graphs [22] to model 3D
data for scene synthesis.

Deep Learning on Graphs. A few works learn on graph node embeddings
over a single large graph [37–39]. This is similar to word embeddings learned
in natural language processing models (e.g., word2vec [40]). However, in this
work, we must process multiple different graphs representing various action video
examples. Related to our work on graph processing are graph neural networks
(GNNs), which are capable of processing arbitrary graphs. GNNs have been used
to model a variety of structural data, including molecular fingerprints, citation
networks, and knowledge graphs [41, 42]. GNNs has also been used to model
relationships between images for few-shot image classification [43].

3 Problem Formulation

3.1 Fewshot-Learning

We first formulate the few-shot learning problem following the definitions in
previous works [14, 12]. In contrast to standard classification problem, the classes
are split into two types in few-shot learning. Let C = {1, ...K} be the set of all
classes, which is split into sets: Ctrain, the training classes that have sufficient
data for few-shot learning, and Ctest, the novel or unseen classes that have only a
few labeled data. A k-shot N -way classification in few-shot learning means that
we have N novel classes (i.e., |Ctest| = N), and each novel class has k examples.

The success of recent few-shot learning approaches [12–14, 24–26] relies on
transferring the representation learned in the training classes Ctrain to the novel
classes Ctest for improved data efficiency. In other words, the few-shot learning
problem can be formulated as learning a metric function φ(xi, xj) for two input
examples xi and xj from Ctrain, which can generalize to novel classes Ctest so
that φ(xi, xj) is small for data points in the same class, while larger and more
distant for data from different classes. One naive approach for learning φ(·, ·)
is to directly apply supervised training on Ctrain, which directly minimizes the
intra-class distance while maximizing the inter-class distance. However, it has
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been shown that a better approach is to employ “episodic training” that simu-
lates the few-shot setting to learn φ(xi, xj) in Ctrain [12]. This leads to stronger
generalization to novel classes Ctest.

3.2 Graph-based Few-shot Learning

Our work follows the few-shot learning setup, and introduces it to 3D action
recognition (see Figure 8 in Supplementary). The key challenge is that, unlike
the image counterpart, the form of the metric function φ(·, ·) is still a critical
research problem. We argue that direct application of holistic approaches, such
as PointNet [18], does not fully utilize the spatial information in the 3D data.
Image processing and proposing and segmenting arbitrary objects remains a
challenge [44], while the extra dimension in 3D data allows us to better model
the relationships between human and objects. Thus, our primary contribution
is to explicitly leverage the spatial information with graphical representation.
Formally, our Neural Graph Matching Networks can be seen as decomposing the
metric function as:

φ(xi, xj) = φGM (g(xi), g(xj)), (1)

where g(·) is our graph generator that obtains the interaction graph from the
input, and φGM (·, ·) is the graph matching network we learn jointly with the
generator to directly optimize for few-shot learning.

4 Methods

We have formulated few-shot learning as learning the metric function φ(·, ·)
from the training classes Ctrain, and the goal is to learn to generalize to Ctest
for few-shot classification. The primary contribution of our work is to explicitly
leverage the 3D information by decomposing the the metric into φ(xi, xj) =
φGM (g(xi), g(xj)), the graph matching metric φGM , and the graph generator
g(·). This decomposition allows us to better leverage spatial information that
is inherent in the 3D data, and leads to stronger generalization for few-shot
learning. An overview of our method is shown in Figure 3. We first discuss our
graph learning approach in Section 4.1, followed by the graph matching method
in Section 4.2. Finally, we show how the combination of the two can be trained
in a end-to-end fashion in Section 4.3.

4.1 Graph Generation

Our key insight is that 3D data contains inherent spatial structure which can be
encoded in graphical form to improve data-efficiency of few-shot learning. The
challenge is that we aim to achieve graph generation without graph supervision
and annotation. One naive approach is to use heuristics based approaches and
hard-code the graph generation process. However, such heuristics can easily be
affected by noise, and it is not guaranteed to be beneficial to our few-shot learning
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Fig. 3. Overview of Neural Graph Matching (NGM) Networks. NGM consists of two
parts: graph generation and the graph matching metric, which are jointly optimized for
few-shot learning. In graph generation, we utilize graph convolution to generation node
features that take the contextual information into account. For the graph matching
metric, we propose graph tensor as the graph representation that allow us to combine
information in both the graph structure and the continuous node representation.

problem. We address the challenge by formulating the graph generation as a
differentiable process, which can be trained jointly with our graph matching
metric to directly optimize for the few-shot objective.

We use the interaction graph as our graphical representation, which is com-
posed of nodes that represent physical entities in a 3D scene (e.g. body parts,
objects) as well as edges that represent interactions between the entities (e.g.
touch, gaze) [22]. Given a set of node categories C and a set of node relationships
E, an interaction graph Gi,t representing a video frame xi,t is a tuple (Ni,t, Ei,t)
where Ni,t = {n1, ..., nn} is the set of nodes with each nj 2 C, and E is the set
of undirected edges of the form (nj , e, nk), where nj , nk 2 N and e 2 E.

Node Construction. Nodes of an interaction graph can be obtained using
either human annotated object and pose detections, or any pretrained object or
pose detector. Each node contains associated features ρi,t, which can be extracted
from the raw pixels of the image (e.g. 3D position).

Edge Learning. In contrast to node construction, which are well-studied prob-
lems in the object and pose detection space, edge learning to capture the rela-
tionship between objects in the scene is still an on-going research area [45]. In
contrast to previous works that use fully supervised learning for the edges [45],
we learn the edge generation jointly with our graph matching metric for few-shot
learning. It is thus important for the edge learning process to be differentiable.
This expands the semantics of our learned interaction graph edges beyond prede-
fined heuristics (e.g. contact, gaze) [22]. Given two nodes xi, xj from the graph,
we define the edge strength Ai,j between the nodes as:

Ai,j = ψ(xi, xj) = MLPedge(|f(xi)− f(xj)|), (2)
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where f(·) is the feature representation of the node, and MLPedge(·) is a multi-
layer perceptron. Taking the absolute difference between the features instead
of concatenating them ensures that the operation satisfy the symmetry prop-
erty [43]. Thus, f(·) plays an important role for the quality of our edges. It is
important that f(·) also depends on the graph structure, and is not applied inde-
pendently for each node, as the same object can have very different relationships
with others depending on different context. When making cereal, the node for
bowl should be closely related to hand, while the relationship shouldn’t exist
when the action is just opening the microwave. We thus update the node feature
representation with neighboring node’s representation using graph convolution
networks [42] to make f(·) also depend on the adjacency matrix. We update
them iteratively:

f (k+1)(xi) = σ((D(k))−
1

2A
(k)
i (D(k))−

1

2 f (k)(xi)Wedge), (3)

A
(k)
i,j = MLPedge(|f

(k)(xi)− f (k)(xj)|), (4)

where D
(k)
i,i =

P
j A

(k)
j,i is the diagonal node degree matrix, and Wedge is the

trainable matrix for feature representation. We use the initial node feature from
node construction as f (0)(·). In this case, our generated edges would depend on
the structure of the graph depending on the context. Note that we keep the
continuous edge strength in the adjacency matrix A to preserve the learned edge
as a differentiable inputs for our graph matching metric function. This allows us
to train the graph generation to directly optimize few-shot generalization.

4.2 Graph Matching

We have discussed how we generate the interaction graph as the graphical rep-
resentation to explicitly leverage the spatial information inherent in the 3D in-
put. As discussed in Section 3, we formulate the few-shot learning φ(xi, xj) =
φGM (g(xi), g(xj)) as learning jointly the graph generation g(·) and graph match-
ing φGM . Now we discuss the graph matching metric φGM .

In contrast to classical exact graph matching problem [46], where there is
an isomorphic relationship between the two comparing graphs, our data-driven
graphs can have varying number of nodes. This is called the inexact graph match-

ing [47], and has been important for image segmentation and processing [48].
However, classical inexact graph matching usually abstracts away from the node
representation or feature, which does not fully utilize the input information in
our case. For example, even when the node for hand is close to an object, the
corresponding action still depends on other context in the input, and cannot be
solely captured by the graph structure.

On the other extreme is recent approaches that aims to learn a graph embed-

ding [49] as a single vector representation capturing all the information in the
graph. While it is possible to include the edge information through approaches
like graph neural networks [42, 50], 3D action recognition often requires us to
keep fine-grained information. For example, when an action is interacting with
cluttered objects, it is important that we explicitly model their relationships.
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We thus propose to use graph tensor as the graph matching representation.
A graph tensor T 2 R

|C|×|C|×d is a three dimensional tensor, where |C| is the
number of node types, and d the dimension of the node feature. We define:

Tm,m,: =
X

c(i)=m

f̂(xi), and Tm,k,: =
X

c(i)=m,c(j)=k

ψ̂(xi, xj) for i 6= j, (5)

where c(i) is the node type of node i, f̂(·) the node matching feature, and
ψ(·, ·) the edge feature for matching. For the node matching feature we reuse the
weights Wedge from graph generation and define:

f̂(xi) = σ(D̃− 1

2AiD̃
− 1

2 f(xi)Wedge), (6)

where A is the final adjacency matrix from node generation, and f(·) is the
corresponding final node feature. For the edge matching feature, we reuse the
node affinity from Eq. (2): ψ(·, ·) = ψ̂(·, ·). For two interaction graphs Gi and
Gj , we thus define the graph matching metric as:

φGM (Gi, Gj) = ||T(Gi)−T(Gj)||
2, (7)

the distance between the corresponding graph tensors. Here we overload the
notation T, where now T(G) is the graph tensor of graph G. One implicit as-
sumption of our method is that we assume the availability of the node type
classifier c(·) for aggregating and matching the nodes of the same type. Node
type in this case can be human joint or object class. This resolves the node
correspondence and simplifies the graph matching problem.

In the few-shot setting, we hope to learn a deep graph matching metric
between a query graph generated from query and support graphs generated
from the support examples in each action class. We follow the prototypical
networks [14], and define the prototypical graph tensor of a class k as Tk =
1
N

P
c(i)=k Ti the average of graph tensor of all the support graphs.

To predict the action class for a given query example xi, we compare the
query’s graph tensor with the prototypical graph tensor of each class k:

p(y = k|xi) =
exp(−||T(g(xi)),Tk||

2)P
k0 exp(−||T(g(xi)),Tk0 ||2

) =
exp(−φGM (xi,xk))P
k0 exp(−φGM (xi,xk0))

, (8)

where xk is the synthetic prototype for type k for interpretation.

4.3 Learning and Optimization

Learning is performed by minimizing the negative log-probability of the true
class k via stochastic gradient descent:

J = −log p(y = k|xi) =
exp(−φGM (xi,xk))P
k0 exp(−φGM (xi,xk0))

(9)

We use episode-based training [12] to simulate the few-shot setting at training
to directly optimize for generalization to unseen novel classes.
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Note that the proposed Neural Graph Matching Networks is end-to-end train-
able from the input x. We have defined neural graph matching as:

φGM (xi, xj) = ||T(g(xi))−T(g(xj))||
2. (10)

From Eq. (3) and Eq. (4), we can see that both the output feature and adjacency
matrix are differentiable for graph generator g(·). From Eq. (5), both the node

matching feature f̂(·) and the edge matching feature ψ̂(·) are differentiable. In
this case, we are able to train the loss in Eq. (9) directly from the input with
episode-based training. This allows us to jointly learn the optimized graph and
the corresponding graph matching metric for few-shot learning.

5 Experiments

In this work, our goal is few-shot 3D action recognition, where the model is
able to classify novel classes with only a few training examples. Instead of di-
rectly applying a holistic approach as used in the image space, we propose to
use an interaction graph as the intermediate representation to explicitly lever-
age the inherent spatial information in 3D data. Our experiments aim to answer
the following questions: (1) How does NGM’s graphical representation approach
compare with holistic methods such as PointNet [18] for few-shot 3D action
learning? (2) How important are learnable edges for capturing node interac-
tion beyond heuristics (e.g., distance)? (3) How does the proposed graph tensor

representation for learning graph matching function compare with alternatives
such inexact graph matching and graph embedding? We answer the questions by
comparing NGM with state-of-the-art 3D representations [10, 18], and conduct
extensive ablation studies on the design choices of our model.

5.1 Datasets.

We use two 3D action dataset with varieties of human-object interactions, where
there exists challenging fine-grained actions to recognize. This is ideal for evalu-
ating few-shot 3D action recognition. Because most existing few-shot approaches
rely on the principle of transferring knowledge from seen classes to unseen classes,
it is important for the seen and unseen classes to be related. At the same time,
the actions should still be fine-grained to have challenges for proper evaluation.
CAD-120. We use CAD-120, a RGB-D video dataset containing over 60,000
video frames of activity performed by 4 subjects (Figure 2). We focus on eval-
uating the sub-activity labels (e.g., reaching, moving, placing) and their com-
bination with objects in the scene (e.g., bowl, milk, and microwave). These
fine-grained interactions with the objects make the classification challenging in
few-shot setting. In addition, as the subjects are only given high-level instruction
of the action, there can be real-world execution varieties in the videos. For our
experiments, we split the dataset into 20 training and 10 testing classes.
PiGraphs.We use the PiGraphs dataset [22], which uses RGB-D sensors to cap-
ture common activities, annotated as sets of verb-noun pairs such as use-laptop,
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Table 1. Few-Shot Action Recognition Results. We compare our method to
baseline holistic methods and baseline part-based methods.

Model CAD-120 PiGraphs

1-shot 5-shot 1-shot 5-shot

PointNet [18] 57.2 69.1 60.6 82.5
P-LSTM [10] 60.5 68.1 66.6 71.7
S-RNN [51] 65.4 85.4 – –
NGM w/o Edges 66.1 85.0 75.9 71.1
NGM 78.5 91.1 80.2 88.3

lie-bed, and look-whiteboard. Annotations also include verb-noun pair com-
positions, resulting in action classes such as stand-floor+write-whiteboard

and sit-chair+look-monitor+type-keyboard. The dataset contains reconstructed
3D indoor environments, which is ideal for understanding 3D human-object in-
teraction. In addition, the dataset comes with voxel annotation that is not avail-
able in the CAD-120 dataset. We utilize the iGraphs from the original PiGraphs
dataset as our heuristic-derived baseline. We used 32 training and 10 testing
classes for our experiments.

For both datasets, nodes were derived from object locations in the dataset.
We note that node locations can easily be extracted using a state-of-the-art
object detector, but our work is primarily focused on the problem of generating
and learning node relationships.

5.2 Evaluating 3D Action Representation for Few-Shot Learning

We now evaluate the representations for few-shot 3D action learning and analyze
the importance of explicit graphical structure learning. We compare our method
to three baselines:
PointNet. PointNet [18] utilizes permutation invariant operators and directly
consumes the point cloud as input. This approach has achieved state-of-the-art
results on 3D classification and semantic segmentation. We select this baseline
as the representative holistic approach without explicitly leveraging the spatial
information, and aim to capture the action classification by learning from the
whole scene. For a fair comparison, in addition to the point coordinates and
RGB values, we also concatenate the detected object type of each point as input
to the PointNet.
P-LSTM. Part-aware LSTM (P-LSTM) [10] is an important skeleton based
3D action recognition approach that has been widely used. Unlike PointNet, P-
LSTM implicity allows the emergence of structure in the LSTM cell. However,
this structure is not explicitly required as in our Neural Graph Matching. In
addition to the human joint location, we also feed in the object locations to
P-LSTM for a fair comparison.
NGM w/o Edges. We compare our own ablation model without edges as a
baseline. In this case, neither the graph learning in graph generation (Section
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Reaching bowl

Reaching microwave

Placing milk

Placing box

Moving

Reaching medicine box

Opening medicine box

Reaching medicine box
Reaching bowl

Reaching microwave

Placing milk

Reaching milk

Fig. 4. We show the prediction of our model (green label) and P-LSTM [10] (red label)
on the CAD-120 dataset. Each action example is represented by three frames (start,
middle, end) of the action clip. The graph is overlaid on each frame, where yellow dots
are nodes, and green lines are edges. Our graph based approach is able to correctly
predict the action class while raw input data can be confusing the PLSTM.

4.1) nor the graph tensor in graph matching (Section 4.2) would be possible.
In this case, the model is reduced a graph embedding model without passing
messages between nodes. We choose this baseline to show the importance of
learning both the edges and the graph matching tensor.

Results. The 1-shot and 5-shot action recognition results on both the CAD-120
and the PiGraphs datasets are shown in Table 1. It can be seen that NGM sig-
nificantly outperforms the baselines on both datasets. We can see that, without
enough training data in few-shot learning, holistic representation like Point-
Net cannot learn effective features for classification. On the other hand, while
P-LSTM and S-RNN are effective for supervised action recognition, without
enough data, the hidden states of these recurrent neural networks are unable to
capture the structure of the video. In contrast to the baseline, NGM explicitly
leverages the interaction graph as the graphical representation, and uses graph
tensor in the graph matching stage to compare not only the vector representation
of nodes, but also the structure of the graph through edge matching feature. It
is important to note that the performance of “NGM w/o Edges” is significantly
lower than our full model. This shows that learning the structure and relation-
ship between objects/nodes in the scene plays an important role for generalizing
few-shot learning to novel classes. For comparison, fully supervised results for
PiGraphs and CAD-120 are 94.7% and 93.7%. The higher performance in the
fully supervised setting demonstrates few-shot learning is more challenging than
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Table 2. Graph Learning Ablation Study.We assess the effect of our edge learning.
We compare having no edges, heuristic-defined edges, and our learned edges.

Edges CAD-120 PiGraphs

1-shot 5-shot 1-shot 5-shot

None 66.1 85.0 75.9 82.5
Human-Object 74.9 89.7 75.5 71.3
Proximity 77.2 88.1 – –
Learned 78.5 91.1 80.2 88.3

Cleaning microwave Making cereal Stacking bowls Microwaving food Making cereal

Fig. 5. CAD-120 Graph Learning Results. We show five examples of generated
graph (green) compared with the heuristic-defined graph (red) in the middle row. Top
row shows the corresponding frame, and bottom row shows the adjacency matrix. It
can be seen that NGM generates node relationships that are important to understand
the action but not captured in the heuristic edges. For example, NGM automatically
generates the edge between human and the microwave in the cleaning microwave action.

fully supervised learning on these datasets. In the following sections, we will
discuss more thorough analysis of each component of our model.
Qualitative Results. We show qualitative results comparing P-LSTM model
(red label) to NGM (green label) in Figure 4. In particular, P-LSTM has difficulty
capturing the specific interaction with an object (e.g. placing vs. reaching milk,
opening vs. reaching medicine box). In addition, for action sequences where the
human is interacting with multiple objects, P-LSTM does not always correctly
predict the correct object relevant for the interaction (e.g., placing milk vs. box,
reaching bowl vs. microwave). From the graphs shown in Figure 4, we can see
that the explicit modeling of the evolution of graphs over time is a useful signal
for predicting the correct action. For instance, in the case of reaching medicine

box, the graph begins with no edges, then creates an edge between the human
and the medicine box at later timesteps to represent “reaching”.

5.3 Evaluating Edge Learning

Graph Learning is Important. We have shown in Section 5.2 that explicitly
learning the object/human relationships through edges plays an important role
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Fig. 6. PiGraphs Graph Learning Results. Comparison of our heuristic graph
(top) and our generated graph (bottom). In contrast to the heuristic edges which only
contain human joints and immediate objects in contact, our learned edges is able to
incorporate further context of the action. While not hand-crafted, the learned edges is
still able to capture that this is a human-centered problem and center the edges around
the human.

to the success of our method. We now analyze the effect of different edge gen-
eration approaches. In addition to “NGM no Edge” (shown as “None” in this
section), we consider two heuristics for generating the edges: The first is “Prox-
imity”, where we add an edge between two nodes if the 3D locations are close.
The second is “Human-Object”, which is similar to “Proximity”, but we only
add the edge if it is between a human joint and a object. The motivation is that
it can focus the model on the human-object interaction that are important to
understanding the action. The results are shown in Table 2. It can be seen that
both of the heuristics can improve over the “None” baseline, but the proposed
edge learning approach still performs the best. Inherently, heuristically-defined
graphs are sensitive to noise in node location and constrained by hand-crafted
rules that are challenging to generalize. For instance, if a human is close to an
unrelated object, a proximity-based edge generator would naively create an un-
desired edge relationship between the human and the object. The forced mixing
of unrelated node features such as in this case can affect performance.

Qualitative Results. In contrast to heuristic edge generation techniques,
NGM automatically discovers the important node relationships by optimizing
the graph structure for the few-shot learning objective, leading to better predic-
tion performance. NGM has the freedom to learn edge semantics beyond specific
hand-designed criteria (e.g., proximity) for node linking. We visualize learned
edges in Figure 5 and Figure 6. NGM-learned graphs (green) contain node rela-
tionships that are not captured in heuristic-defined graphs (red).

Cleaning microwave in Figure 5 links the human node with a cleaning cloth,
while NGM additionally links the human with the microwave, even placing
stronger weight on the human-microwave than the human-cloth edge, showing
that this relationship is critical to predicting the action class. In making cereal,
we see that the heuristic graph links a naive edge between the human and the
cereal. NGM also predicts this edge, but also learned the relevance of the milk
jug and the bowl for the cereal-making action, despite the human not being in
contact with these objects.
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Table 3. Matching Ablation Study. We evaluate the performance of our features
matching and our graph structure matching, as well as the combination of both.

Match CAD-120 PiGraphs

1-shot 5-shot 1-shot 5-shot

Features 61.1 78.3 77.8 74.1
Adjacency 60.5 78.2 78.3 74.1
Adjacency & Features 78.5 91.1 80.2 88.3

We similarly visualize our learned node relationships on the PiGraphs dataset
in Figure 6, in comparison to the heuristic graphs. The heuristic graph (Top)
mainly captures the human skeleton and the immediate objects in contact with
skeleton joints. Such a representation is akin to several existing methods on
pose-based action recognition methods [29, 30]. In contrast, our learned graph
captures far more complex relationships in the scene that are directly optimal
for predicting the corresponding action class. Our learned edges tend to center
towards the human, which is intuitive given that the PiGraphs dataset is focused
on human-centric interactions. However, the edges do not contain the human
skeleton edges, suggesting that edges between human joints may not actually be
crucial to the classification of action scenes.

5.4 Evaluating Graph Matching Representation

In contrast to classical graph matching [47] and graph embeddings [42], our pro-
posed graph tensor in Section 4.2 combines both the node representation along
with the graph structure to our matching function. We now analyze the impor-
tance of combining the continuous feature with the graph structure. The results
are shown in Table 3. It can be seen that having only the node representation
or the graph structure cannot fully represent the graph for few-shot learning.
This shows that there exists complementary information in the holistic graph
embedding and the structural adjacency matrix, and the proposed graph tensor
is able to leverage and combine both information.

6 Conclusion

We presented Neural Graph Matching (NGM) Networks, a novel few-shot learn-
ing framework that leverage the inherent spatial information in 3D through a
graphical intermediate representation. NGM consists of two parts: a graph gener-
ator, and a graph matching metric, which can be jointly trained in an end-to-end
fashion to directly optimize for the few-shot learning objective. We demonstrate
that this leads to stronger generalization to unseen classes with only a few-
example when compared to both holistic and heuristic-defined approaches.
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