
Distributionally Adaptive Meta Reinforcement
Learning

Anurag Ajay
MIT

aajay@mit.edu

Dibya Ghosh
UC Berkeley

dibya.ghosh@berkeley.edu

Sergey Levine
UC Berkeley

svlevine@eecs.berkeley.edu

Pulkit Agrawal
MIT

pulkitag@mit.edu

Abhishek Gupta
MIT

abhigupta@mit.edu

Abstract

Meta-reinforcement learning algorithms provide a data-driven way to acquire poli-
cies that quickly adapt to many tasks with varying rewards or dynamics functions.
However, learned meta-policies are often effective only on the exact task distribu-
tion on which they were trained and struggle in the presence of distribution shift
of test-time rewards or transition dynamics. In this work, we develop a frame-
work for meta-RL algorithms that are able to behave appropriately under test-time
distribution shifts in the space of tasks. Our framework centers on an adaptive
approach to distributional robustness that trains a population of meta-policies to
be robust to varying levels of distribution shift. When evaluated on a potentially
shifted test-time distribution of tasks, this allows us to choose the meta-policy with
the most appropriate level of robustness, and use it to perform fast adaptation. We
formally show how our framework allows for improved regret under distribution
shift, and empirically show its efficacy on simulated robotics problems under a
wide range of distribution shifts.

1 Introduction

The diversity and dynamism of the real world require reinforcement learning (RL) agents that
can quickly adapt and learn new behaviors when placed in novel situations. Meta reinforcement
learning provides a framework for conferring this ability to RL agents, by learning a “meta-policy”
trained to adapt as quickly as possible to tasks from a provided training distribution [38, 9, 32, 46].
Unfortunately, meta-RL agents are prone to overfitting to the distribution of tasks they are trained
on, and have been shown to behave erratically when asked to adapt to tasks beyond the training
distribution [4, 7]. As an example of this negative transfer, consider using meta-learning to teach
a robot to navigate to goals quickly (illustrated in Figure 1). The resulting meta-policy learns to
quickly adapt and walk to any target location specified in the training distribution, but explores poorly
and fails to adapt to any location not in that distribution. Overfitting is particularly problematic
for the meta-learning setting, since the scenarios where we need the ability to learn quickly are
usually exactly those where the agent experiences distribution shift. This type of meta-distribution
shift afflicts a number of real-world problems including autonomous vehicle driving [8], in-hand
manipulation [15, 1], and quadruped locomotion [23, 21, 17], where the test-time task distribution
may not be well represented during training.

In this work, we study meta-RL algorithms that learn meta-policies resilient to task distribution shift
at test time. One approach to enable this resiliency is to leverage the framework of distributional

Decision Awareness in Reinforcement Learning Workshop at the 39th International Conference on Machine
Learning (ICML), Baltimore, Maryland, USA, 2022. Copyright 2022 by the author(s).

robustness [36], training meta-policies that prepare for distribution shifts by optimizing the worst-case
empirical risk against a set of task distributions which lie within a bounded distance from the original
training task distribution (often referred to as an uncertainty set)). This allows meta-policies to
deal with potential test-time task distribution shift, bounding their worst-case test-time regret for
distributional shifts within the chosen uncertainty set. However, choosing an appropriate uncertainty
set can be quite challenging without further information about the test environment, significantly
impacting the test-time performance of algorithms under distribution shift. Large uncertainty sets
allow resiliency to a wider range of distribution shifts, but the resulting meta-policy adapts very slowly
at test time; smaller uncertainty sets enable faster test-time adaptation, but leave the meta-policy
brittle to task distribution shifts. Can we get the best of both worlds?

+1

+1 +1

M
et

a
Tr

ai
n

M
et

a
Te

st

+1

Episode 1 Episode 2

⇡meta
<latexit sha1_base64="04ZwISNQzfwUIERNw0RDchdyb+M=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KkkV9Fj04rGC/YA2hM120i7dfLA7UUvMT/HiQRGv/hJv/hu3bQ7a+mDg8d4MM/P8RHCFtv1trKyurW9slrbK2zu7e/tm5aCt4lQyaLFYxLLrUwWCR9BCjgK6iQQa+gI6/vh66nfuQSoeR3c4ScAN6TDiAWcUteSZlX7CvayP8IhZCEjz3DOrds2ewVomTkGqpEDTM7/6g5ilIUTIBFWq59gJuhmVyJmAvNxPFSSUjekQeppGNATlZrPTc+tEKwMriKWuCK2Z+nsio6FSk9DXnSHFkVr0puJ/Xi/F4NLNeJSkCBGbLwpSYWFsTXOwBlwCQzHRhDLJ9a0WG1FJGeq0yjoEZ/HlZdKu15yzWv32vNq4KuIokSNyTE6JQy5Ig9yQJmkRRh7IM3klb8aT8WK8Gx/z1hWjmDkkf2B8/gBBmJSl</latexit>

⇡meta
<latexit sha1_base64="04ZwISNQzfwUIERNw0RDchdyb+M=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KkkV9Fj04rGC/YA2hM120i7dfLA7UUvMT/HiQRGv/hJv/hu3bQ7a+mDg8d4MM/P8RHCFtv1trKyurW9slrbK2zu7e/tm5aCt4lQyaLFYxLLrUwWCR9BCjgK6iQQa+gI6/vh66nfuQSoeR3c4ScAN6TDiAWcUteSZlX7CvayP8IhZCEjz3DOrds2ewVomTkGqpEDTM7/6g5ilIUTIBFWq59gJuhmVyJmAvNxPFSSUjekQeppGNATlZrPTc+tEKwMriKWuCK2Z+nsio6FSk9DXnSHFkVr0puJ/Xi/F4NLNeJSkCBGbLwpSYWFsTXOwBlwCQzHRhDLJ9a0WG1FJGeq0yjoEZ/HlZdKu15yzWv32vNq4KuIokSNyTE6JQy5Ig9yQJmkRRh7IM3klb8aT8WK8Gx/z1hWjmDkkf2B8/gBBmJSl</latexit>

Figure 1: Failure of Typical Meta-RL.
On meta-training tasks, πmeta explores effec-
tively and quickly learns the optimal behav-
ior (top row). When test tasks come from a
slightly larger task distribution, exploration
fails catastrophically, resulting in poor adap-
tation behavior (bottom row).

Our key insight is that we can prepare for a variety of
potential test-time distribution shifts by constructing and
training against different uncertainty sets at training time.
By preparing for adaptation against each of these uncer-
tainty sets, an agent is able to adapt to a variety of poten-
tial test-time distribution shifts by adaptively choosing the
most appropriate level of distributional robustness for the
test distribution at hand. We introduce a conceptual frame-
work called distributionally adaptive meta reinforcement
learning formalizing this idea. At train time, the agent
learns robust meta-policies with widening uncertainty sets,
preemptively accounting for different levels of test-time
distribution shift that may be encountered. At test time,
the agent infers the level of distribution shift it is faced
with, and then uses the corresponding meta-policy to adapt
to the new task. In doing so, the agent is able to adaptively
choose the best level of robustness for the test-time task
distribution, preserving the fast adaptation benefits of meta
RL, while also ensuring good asymptotic performance under distribution shift. We instantiate a
practical algorithm in this framework (DiAMetR), using learned generative models to imagine new
task distributions close to the provided training tasks that can be used to train robust meta-policies.

The contribution of this paper is to propose a framework for making meta-reinforcement learning
resilient to a variety of task distribution shifts, and DiAMetR, a practical algorithm instantiating
the framework. DiAMetR trains a population of meta-policies to be robust to different degrees of
distribution shifts and then adaptively chooses a meta-policy to deploy based on the inferred test-time
distribution shift. Our experiments verify the utility of adaptive distributional robustness under
test-time task distribution shift in a number of simulated robotics domains.

2 Related Work
Meta-reinforcement learning algorithms aim to leverage a distribution of training tasks to “learn a
reinforcement learning algorithm", that is able to learn as quickly on new tasks drawn from the same
distribution. A variety of algorithms have been proposed for meta-RL, including memory-based
[6, 24], gradient-based [9, 34, 11] and latent-variable based [32, 46, 45] schemes. These algorithms
show the ability to generalize to new tasks drawn from the same distribution, and have been applied
to problems ranging from robotics [26, 45, 17] to computer science education [42]. This line of
work has been extended to operate in scenarios without requiring any pre-specified task distribution
[10, 14] or in offline settings [5, 27, 25] making them more broadly applicable to a wider class of
problems. However, most meta-RL algorithms assume source and target tasks are drawn from the
same distribution, an assumption rarely met in practice. Our work shows how the machinery of
meta-RL can be made compatible with distribution shift at test time, using ideas from distributional
robustness. Some recent work shows that model based meta-reinforcement learning can be made to
be robust to a particular level distribution shift [22, 19] by learning a shared dynamics model against
adversarially chosen task distributions. We show that we can build model-free meta-reinforcement
learning algorithms, which are not just robust to a particular level of distribution shift, but can adapt
to various levels of shift.

Distributional robustness methods have been studied in the context of building supervised learning
systems that are robust to the test distribution being different than the training one. The key idea

2

is to train a model to not just minimize empirical risk, but instead learn a model that has the
lowest worst-case empirical risk among an “uncertainty-set" of distributions that are boundedly close
to the empirical training distribution [36, 20, 2, 13]. If the uncertainty set and optimization are
chosen carefully, these methods have been shown to obtain models that are robust to small amounts
of distribution shift at test time [36, 20, 2, 13], finding applications in problems like federated
learning [13] and image classification [20]. This has been extended to the min-max robustness
setting for specific algorithms like model-agnostic meta-learning [3], but are critically dependent on
correct specification of the appropriate uncertainty set and applicable primarily in supervised learning
settings. Alternatively, several RL techniques aim to directly tackle the robustness problem, aiming
to learn policies robust to adversarial perturbations [40, 44, 31, 30]. [43] conditions the policy on
uncertainty sets to make it robust to different perturbation sets. While these methods are able to
learn conservative, robust policies, they are unable to adapt to new tasks as DiAMetR does in the
meta-reinforcement learning setting. In our work, rather than choosing a single uncertainty set, we
learn many meta-policies for widening uncertainty sets, thereby accounting for different levels of
test-time distribution shift.

3 Preliminaries

Meta-Reinforcement Learning aims to learn a fast reinforcement learning algorithm or a “meta-
policy" that can quickly maximize performance on tasks T from some distribution p(T). Formally,
each task T is a Markov decision process (MDP) M = (S,A,P,R, γ, µ0); the goal is to exploit
regularities in the structure of rewards and environment dynamics across tasks in p(T) to acquire
effective exploration and adaptation mechanisms that enable learning on new tasks much faster than
learning the task naively from scratch. A meta-policy (or fast learning algorithm) πmeta maps a history
of environment experience h ∈ (S ×A×R)∗ in a new task to an action a, and is trained to acquire
optimal behaviors on tasks from p(T) within k episodes:

min
πmeta

ET ∼p(T) [Regret(πmeta, T)] ,

Regret(πmeta, T) = J(π∗
T)− E

a
(i)
t ∼πmeta(·|h(i)

t),T

[
1

k

k∑
i=1

T∑
t=1

r
(i)
t

]
,

where h
(i)
t = (s

(i)
1:t, r

(i)
1:t, a

(i)
1:t−1) ∪ (s

(j)
1:T , r

(j)
1:T , a

(j)
1:T)

i−1
j=1. (1)

Intuitively, the meta-policy has two components: an exploration mechanism that ensures that appro-
priate reward signal is found for all tasks in the training distribution, and an adaptation mechanism
that uses the collected exploratory data to generate optimal actions for the current task. In practice,
the meta-policy may be represented explicitly as an exploration policy conjoined with a policy
update[9, 32], or implicitly as a black-box RNN [6, 46]. We use the terminology “meta-policies"
interchangeably with that of “fast-adaptation" algorithms, since our practical implementation builds
on [29] (which represents the adaptation mechanism using a black-box RNN). Our work focuses
on the setting where there is potential drift between ptrain(T), the task distribution we have access to
during training, and ptest(T), the task distribution of interest during evaluation.

Distributional robustness [36] learns models that do not minimize empirical risk against the training
distribution, but instead prepare for distribution shift by optimizing the worst-case empirical risk
against a set of data distributions close to the training distribution (called an uncertainty set):

min
θ

max
ϕ

Ex∼qϕ(x)[l(x; θ)] s.t. D(ptrain(x)||qϕ(x)) ≤ ϵ (2)

This optimization finds the model parameters θ that minimizes worst case risk l over distributions
qϕ(x) in an ϵ-ball (measured by an f -divergence) from the training distribution ptrain(x).

4 Distributionally Adaptive Meta-Reinforcement Learning

In this section, we develop a framework for learning meta-policies, that given access to a training
distribution of tasks ptrain(T), is still able to adapt to tasks from a test-time distribution ptest(T) that
is similar but not identical to the training distribution. We introduce a framework for distributionally
adaptive meta-RL below and instantiate it as a practical method in Section 5.

3

Meta-train on train-task distribution

Replay
Buffer

Reward Distribution
r!(s, a, z)

<latexit sha1_base64="k9A0siND554MKFM42ftZXWmp14c=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAIEULYjYIeg148RjAPSJZldjKbDJnHMjMrJCFf4sWDIl79FG/+jZNkD5pY0FBUddPdFSWMauN5305uY3Nreye/W9jbPzgsukfHLS1ThUkTSyZVJ0KaMCpI01DDSCdRBPGIkXY0upv77SeiNJXi0YwTEnA0EDSmGBkrhW5RhT3JyQCVdQVVJhehW/Kq3gJwnfgZKYEMjdD96vUlTjkRBjOkddf3EhNMkTIUMzIr9FJNEoRHaEC6lgrEiQ6mi8Nn8NwqfRhLZUsYuFB/T0wR13rMI9vJkRnqVW8u/ud1UxPfBFMqktQQgZeL4pRBI+E8BdinimDDxpYgrKi9FeIhUggbm1XBhuCvvrxOWrWqf1mtPVyV6rdZHHlwCs5AGfjgGtTBPWiAJsAgBc/gFbw5E+fFeXc+lq05J5s5AX/gfP4ArvqScg==</latexit>

Meta-train on imagined test-task distributions

⇡✏1meta
<latexit sha1_base64="n+bVNreQLNlfUNa5pkmZnAWkjfI=">AAACB3icbVBNS8NAEN3Ur1q/oh4FCRbBU0mqoMeiF48V7Ac0sWy203bp5oPdiVhCbl78K148KOLVv+DNf+O2zUFbHww83pthZp4fC67Qtr+NwtLyyupacb20sbm1vWPu7jVVlEgGDRaJSLZ9qkDwEBrIUUA7lkADX0DLH11N/NY9SMWj8BbHMXgBHYS8zxlFLXXNQzfm3dRFeMA0AKRZdpe6ECsutOtkXbNsV+wprEXi5KRMctS75pfbi1gSQIhMUKU6jh2jl1KJnAnISm6iIKZsRAfQ0TSkASgvnf6RWcda6Vn9SOoK0ZqqvydSGig1DnzdGVAcqnlvIv7ndRLsX3gpD+MEIWSzRf1EWBhZk1CsHpfAUIw1oUxyfavFhlRShjq6kg7BmX95kTSrFee0Ur05K9cu8ziK5IAckRPikHNSI9ekThqEkUfyTF7Jm/FkvBjvxsestWDkM/vkD4zPH5NfmmM=</latexit>

⇡✏2meta
<latexit sha1_base64="xBA8UM1oEeMILSyNGU8PfQW+A5o=">AAACB3icbVBNS8NAEN3Ur1q/oh4FCRbBU0mqoMeiF48V7Ac0sWy203bp5oPdiVhCbl78K148KOLVv+DNf+O2zUFbHww83pthZp4fC67Qtr+NwtLyyupacb20sbm1vWPu7jVVlEgGDRaJSLZ9qkDwEBrIUUA7lkADX0DLH11N/NY9SMWj8BbHMXgBHYS8zxlFLXXNQzfm3dRFeMA0AKRZdpe6ECsutFvNumbZrthTWIvEyUmZ5Kh3zS+3F7EkgBCZoEp1HDtGL6USOROQldxEQUzZiA6go2lIA1BeOv0js4610rP6kdQVojVVf0+kNFBqHPi6M6A4VPPeRPzP6yTYv/BSHsYJQshmi/qJsDCyJqFYPS6BoRhrQpnk+laLDamkDHV0JR2CM//yImlWK85ppXpzVq5d5nEUyQE5IifEIeekRq5JnTQII4/kmbySN+PJeDHejY9Za8HIZ/bJHxifP5TkmmQ=</latexit> ⇡

✏M�1

meta
<latexit sha1_base64="QwcfAk19J3QtH7ZtayrGpjw5RA4=">AAACC3icbVDJSgNBEO2JW4xb1KOXIUHwYpiJgh6DXrwIEcwCmXHo6VSSJj0L3TViGObuxV/x4kERr/6AN//GznLQxAcFj/eqqKrnx4IrtKxvI7e0vLK6ll8vbGxube8Ud/eaKkokgwaLRCTbPlUgeAgN5CigHUuggS+g5Q8vx37rHqTiUXiLoxjcgPZD3uOMopa8YsmJuZc6CA+YBoA0y+5SB2LFhXbT62M7y7xi2apYE5iLxJ6RMpmh7hW/nG7EkgBCZIIq1bGtGN2USuRMQFZwEgUxZUPah46mIQ1Auenkl8w81ErX7EVSV4jmRP09kdJAqVHg686A4kDNe2PxP6+TYO/cTXkYJwghmy7qJcLEyBwHY3a5BIZipAllkutbTTagkjLU8RV0CPb8y4ukWa3YJ5XqzWm5djGLI08OSIkcEZuckRq5InXSIIw8kmfySt6MJ+PFeDc+pq05YzazT/7A+PwBjYyb/Q==</latexit>

⇡✏Mmeta
<latexit sha1_base64="TbROBDvTKP/TFnexB/mBsprek58=">AAACB3icbVBNS8NAEN34WetX1KMgwSJ4KkkV9Fj04kWoYD+giWWznbZLNx/sTsQScvPiX/HiQRGv/gVv/hu3bQ7a+mDg8d4MM/P8WHCFtv1tLCwuLa+sFtaK6xubW9vmzm5DRYlkUGeRiGTLpwoED6GOHAW0Ygk08AU0/eHl2G/eg1Q8Cm9xFIMX0H7Ie5xR1FLHPHBj3kldhAdMA0CaZXepC7HiQrvXWccs2WV7AmueODkpkRy1jvnldiOWBBAiE1SptmPH6KVUImcCsqKbKIgpG9I+tDUNaQDKSyd/ZNaRVrpWL5K6QrQm6u+JlAZKjQJfdwYUB2rWG4v/ee0Ee+deysM4QQjZdFEvERZG1jgUq8slMBQjTSiTXN9qsQGVlKGOrqhDcGZfnieNStk5KVduTkvVizyOAtknh+SYOOSMVMkVqZE6YeSRPJNX8mY8GS/Gu/ExbV0w8pk98gfG5w+965p/</latexit>

Figure 2: DiAMetR first learns a meta-policy πϵ1meta and reward distribution rω(s, a, z) on train task distribution.
Then, it uses the reward distribution to imagine different shifted test task distributions (orange dots) on which it
learns different meta-policies {πϵimeta}Mi=2, each corresponding to a different level of robustness .

4.1 Known Level of Test-Time Distribution Shift

We begin by studying a simplified problem where we can exactly quantify the degree to which
the test distribution deviates from the training distribution. Suppose we know that ptest satisfies
D(ptest(T)||ptrain(T)) < ϵ for some ϵ > 0, where D(·∥·) is a probability divergence on the set of task
distributions (e.g. an f -divergence [33] or a Wasserstein distance [39]). A natural learning objective
to learn a meta-policy under this assumption is to minimize the worst-case test-time regret across any
test task distribution q(T) that is within some ϵ divergence of the train distribution:

min
πmeta

R(πmeta, ptrain(T), ϵ),

R(πmeta, ptrain(T), ϵ) = max
q(T)

ET ∼q(T) [Regret(πmeta, T)] s.t. D(ptrain(T)∥q(T)) ≤ ϵ (3)

Solving this optimization problem results in a meta-policy that has been trained to adapt to tasks
from a wider task distribution than the original training distribution. It is worthwhile distinguishing
this robust meta-objective, which incentivizes a robust adaptation mechanism to a wider set of tasks,
from robust objectives in standard RL, which produce base policies robust to a wider set of dynamics
conditions. The objective in Eq 3 incentivizes an agent to explore and adapt more broadly, not act
more conservatively as standard robust RL methods [31] would encourage. Naturally, the quality of
the robust meta-policy depends on the size of the uncertainty set. If ϵ is large, or the geometry of the
divergence poorly reflect natural task variations, then the robust policy will have to adapt to an overly
large set of tasks, potentially degrading the speed of adaptation.

4.2 Handling Arbitrary Levels of Distribution Shift

In practice, it is not known how the test distribution ptest deviates from the training distribution, and
consequently it is challenging to determine what ϵ to use in the meta-robustness objective. We propose
to overcome this via an adaptive strategy: to train meta-policies for varying degrees of distribution
shift, and at test-time, inferring which distribution shift is most appropriate through experience.

We train a population of meta-policies {π(i)
meta}Mi=1, each solving the distributionally robust meta-RL

objective (eq 3) for a different level of robustness ϵi:{
πϵimeta := argmin

πmeta
R(πmeta, ptrain(T), ϵi)

}M
i=1

where ϵM > ϵM−1 > . . . > ϵ1 = 0 (4)

In choosing a spectrum of ϵi, we learn a set of meta-policies that have been trained on increasingly
large set of tasks: at one end (i = 1), the meta-policy is trained only on the original training
distribution, and at the other (i = M), the meta-policy trained to adapt to any possible task within the
parametric family of tasks. These policies span a tradeoff between being robust to a wider set of task
distributions with larger ϵ (allowing for larger distribution shifts), and being able to adapt quickly to
any given task with smaller ϵ (allowing for better per-task regret minimization).

With a set of meta-policies in hand, we must now decide how to leverage test-time experience to
discover the right one to use for the actual test distribution ptest. We recognize that the problem
of policy selection can be treated as a stochastic multi-armed bandit problem (precise formulation
in Appendix A), where pulling arm i corresponds to running the meta-policy πϵimeta for an entire
meta-episode (k task episodes). If a zero-regret bandit algorithm (eg: Thompson’s sampling [41]) is

4

Meta-policy selection during meta-test

⇡✏meta<latexit sha1_base64="YWS0GhZozsEcomFEusaGA45kSRM=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbiLgpZBG8sI5gNyMextJsmSvb1jd04MxzU2/hUbC0Vs/Q92/hs3yRWa+GDg8d4MM/P8SHCNjvNt5ZaWV1bX8uuFjc2t7Z3i7l5Dh7FiUGehCFXLpxoEl1BHjgJakQIa+AKa/uhq4jfvQWkeylscR9AJ6EDyPmcUjdQtHnoR7yYewgMmASBN07vEg0hzEcq0Wyw5ZWcKe5G4GSmRDLVu8cvrhSwOQCITVOu260TYSahCzgSkBS/WEFE2ogNoGyppALqTTL9I7WOj9Ox+qExJtKfq74mEBlqPA990BhSHet6biP957Rj7F52EyyhGkGy2qB8LG0N7Eond4woYirEhlClubrXZkCrK0ARXMCG48y8vkkal7J6WKzdnpeplFkeeHJAjckJcck6q5JrUSJ0w8kieySt5s56sF+vd+pi15qxsZp/8gfX5A1a3mb8=</latexit>

⇡✏meta<latexit sha1_base64="YWS0GhZozsEcomFEusaGA45kSRM=">AAACBXicbVA9SwNBEN2LXzF+RS21OAyCVbiLgpZBG8sI5gNyMextJsmSvb1jd04MxzU2/hUbC0Vs/Q92/hs3yRWa+GDg8d4MM/P8SHCNjvNt5ZaWV1bX8uuFjc2t7Z3i7l5Dh7FiUGehCFXLpxoEl1BHjgJakQIa+AKa/uhq4jfvQWkeylscR9AJ6EDyPmcUjdQtHnoR7yYewgMmASBN07vEg0hzEcq0Wyw5ZWcKe5G4GSmRDLVu8cvrhSwOQCITVOu260TYSahCzgSkBS/WEFE2ogNoGyppALqTTL9I7WOj9Ox+qExJtKfq74mEBlqPA990BhSHet6biP957Rj7F52EyyhGkGy2qB8LG0N7Eond4woYirEhlClubrXZkCrK0ARXMCG48y8vkkal7J6WKzdnpeplFkeeHJAjckJcck6q5JrUSJ0w8kieySt5s56sF+vd+pi15qxsZp/8gfX5A1a3mb8=</latexit>

Test time Meta-policy adaptation

Figure 3: DiAMetR chooses appropriate meta-policy based on inferred distribution shift with Thompson’s
sampling and then quickly adapts the selected meta-policy to individual tasks during meta-test.

used , then after a certain number of test-time meta episodes, we can guarantee that the meta-policy
selection mechanism will converge to the meta-policy that best balances the tradeoff between adapting
quickly while still being able to adapt to all the tasks from ptest(T).

To summarize our framework for distributionally adaptive meta-RL, we train a population of meta-
policies at varying levels of robustness on a distributionally robust objective that forces the learned
adaptation mechanism to also be robust to tasks not in the training task distribution. At test-time, we
use a bandit algorithm to select the meta-policy whose adaptation mechanism has the best tradeoff
between robustness and speed of adaptation specifically on the test task distribution. Combining
distributional robustness with test-time adaptation allows the adaptation mechanism to work even
if distribution shift is present, while obviating the decreased performance that usually accompanies
overly conservative, distributionally robust solutions.

4.3 Analysis

To provide some intuition on the properties of this algorithm, we formally analyze adaptive distribu-
tional robustness in a simplified meta RL problem involving tasks Tg corresponding to reaching some
unknown goal g in a deterministic MDP M, exactly at the final timestep of an episode. We assume
that all goals are reachable, and use the family of meta-policies that use a stochastic exploratory
policy π until the goal is discovered and return to the discovered goal in all future episodes. The
performance of a meta-policy on a task Tg under this model can be expressed in terms of the state
distribution of the exploratory policy: Regret(πmeta, Tg) = 1

dTπ (g)
. This particular framework has

been studied in [10, 18], and is a simple, interpretable framework for analysis.

We seek to understand performance under distribution shift when the original training task distribution
is relatively concentrated on a subset of possible tasks. We choose the training distribution ptrain(Tg) =
(1 − β)Uniform(S0) + βUniform(S\S0), so that ptrain is concentrated on tasks involving a subset
of the state space S0 ⊂ S, with β a parameter dictating the level of concentration, and consider
test distributions that perturb under the TV metric. Our main result compares the performance of a
meta-policy trained to an ϵ2-level of robustness when the true test distribution deviates by ϵ1.

Proposition 4.1. Let ϵi = min{ϵi + β, 1− |S0|
|S| }. There exists q(T) satisfying DTV (ptrain, q) ≤ ϵ1

where an ϵ2-robust meta policy incurs excess regret over the optimal ϵ1-robust meta-policy:

Eq(T)[Regret(π
ϵ2
meta, T)− Regret(πϵ1meta, T)] ≥

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)√
ϵ1(1− ϵ1)|S0|(|S| − S0|)

(5)

The scale of regret depends on c(ϵ1, ϵ2) =
√

ϵ2
−1−1

ϵ1−1−1
, a measure of the mismatch between ϵ1 and ϵ2.

We first compare robust and non-robust solutions by analyzing the bound when ϵ2 = 0. In the regime
of β ≪ 1, excess regret scales as O(ϵ1

√
1
β), meaning that the robust solution is most necessary

when the training distribution is highly concentrated in a subset of the task space. At one extreme, if
the training distribution contains no examples of tasks outside S0 (β = 0), the non-robust solution
incurs infinite excess regret; at the other extreme, if the training distribution is uniform on the set of
all possible tasks (β = 1− |S0|

|S|), robustness provides no benefit.

5

Algorithm 1 DiAMetR: Meta-training phase
1: Given: ptrain(T), Return: Π
2: πϵ1meta,θ , DReplay-Buffer ← Solve equation 1 with off-policy RL2

3: Reward distribution rω , prior ptrain(z)← Solve eq 10 using DReplay-Buffer
4: for ϵ in {ϵ2, . . . , ϵM} do
5: Initialize qϕ(z), πϵmeta,θ and λ ≥ 0.
6: for iteration n = 1, 2, ... do
7: Meta-policy: Update πϵmeta,θ using off-policy RL2 [29]

θ := θ + α∇θEz∼qϕ(z)(Eπϵmeta,θ,P(
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)))

8: Adversarial task distribution: Update qϕ using Reinforce [37]

ϕ := ϕ− α∇ϕ(Ez∼qϕ(z)[Eπϵmeta,θ,P [
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)]] + λDKL(ptrain(z)∥qϕ(z))

9: Lagrange constraint multiplier: Update λ to enforce DKL(ptrain(z)∥qϕ(z)) < ϵ,

λ :=λ≥0 λ+ α(DKL(ptrain(z)∥qϕ(z))− ϵ)

10: end for
11: end for

We next quantify the effect of mis-specifying the level of robustness in the meta-robustness objective,
and what benefits adaptive distributional robustness can confer. For small β and fixed ϵ1, the excess
regret of an ϵ2-robust policy scales as O(

√
max{ ϵ2ϵ1 ,

ϵ1
ϵ2
}), meaning that excess regret gets incurred if

the meta-policy is trained either to be too robust (ϵ2 ≫ ϵ1) or not robust enough ϵ1 ≫ ϵ2. Compared
to a fixed robustness level, our strategy of training meta-policies for a sequence of robustness levels
{ϵi}Mi=1 ensures that this misspecification constant is at most the relative spacing between robustness
levels: maxi

ϵi
ϵi−1

. This enables the distributionally adaptive approach to control the amount of excess
regret by making the sequence more fine-grained, while a fixed choice of robustness incurs larger
regret (as we verify empirically in our experiments as well).

5 DiAMetR: A Practical Algorithm for Meta-Distribution Shift

In order to instantiate our distributionally adaptive framework into a practical algorithm, we must
address how task distributions should be parameterized and optimized over, and also how the robust
meta-RL problem can be solved with stochastic gradient methods. For simplicity, in the remainder
of the paper, we focus on the setting where tasks share transition dynamics, but have different
reward functions. We first introduce the individual components of task parameterization and robust
optimization, and describe the overall algorithm in Algorithm 1 and 2.

Parameterizing Task Distributions: Since we assume that variations in tasks correspond to changes
in the reward function, the problem of representing a task distribution reduces to learning distributions
over reward functions. We propose to learn a probabilistic model of the task reward functions seen
in the training task distribution, and use the learned latent representation as a space on which to
parameterize uncertainty sets over new task distributions. Specifically, we jointly train a reward
encoder qψ(z|h) that encodes reward samples from an environment history into the latent space, and
a decoder rω(s, a, z) mapping a latent vector z to a reward function using a dataset of trajectories
collected from the training tasks. This generative model over reward functions can be trained as a
standard latent variable model by maximizing a standard evidence lower bound (ELBO), trading off
reward prediction and matching a prior ptrain(z) (chosen to be the unit gaussian).

min
ω,ψ

Eh∼D

[
Ez∼qψ(z|h)

[
T∑
t=1

(rω(st, at, z)− rt)
2

]
+DKL(qψ(z|h)||N (0, I))

]
(6)

6

Environment Task reward rtrain {ritest}Ki=1 Θ

*-navigation 1[∥agent− target∥2 ≤ δ] 0.50 {0.55, 0.60, 0.65, 0.70} 2π
Fetch reach 1[∥gripper− target∥2 ≤ δ] 0.10 {0.12, 0.14, 0.16, 0.18, 0.20} 2π
Block push 1[∥block− target∥2 ≤ δ] 0.50 {0.60, 0.70, 0.80, 0.90, 1.0} π/2

Table 1: Parameters for train task distribution ptrain(st) = {(∆ cos θ,∆sin θ) | ∆ ∼ U(0, rtrain), θ ∼ U(0,Θ)}
and test task distributions {pitest(st) = {(∆ cos θ,∆sin θ) | ∆ ∼ U(ri−1

test , ritest), θ ∼ U(0,Θ)}}Ki=1 (where
r0test = rtrain) for different environments

Having learned a latent space, we can parameterize new task distributions q(T) as distributions qϕ(z)
(the original training distribution corresponds to ptrain(z) = N (0, I), and measure the divergence
between task distributions as well using the KL divergence in this latent space D(ptrain(z)∥qϕ(z)).
Learning Robust Meta-Policies: Given this task parameterization, the next question becomes how to
actually perform the robust optimization laid out in Eq:3. The distributional meta-robustness objective
can be modelled as an adversarial game between a meta-policy πϵmeta and a task proposal distribution
q(T). As described above, this task proposal distribution is parameterized as a distribution over latent
space qϕ(z), while πϵmeta is parameterized a typical recurrent neural network policy as in [29]. We
parameterize {πϵimeta}Mi=1 as a discrete set of meta-policies, with one for each chosen value of ϵ.

This leads to a simple alternating optimization scheme (see Algorithm 1), where the meta-policy is
trained using a standard meta-RL algorithm (we use off-policy RL2 [29] as a base learner), and the
task proposal distribution with an constrained optimization method (we use dual gradient descent
[28]). Each iteration n, three updates are performed: 1) the meta-policy πmeta updated to improve
performance on the current task distribution, 2) the task distribution q(z) updated to increase weight
on tasks where the current meta-policy adapts poorly and decreases weight on tasks that the current
meta-policy can learn, while staying close to the original training distribution, and 3) a penalty
coefficient λ is updated to ensure that q(z) satsifies the divergence constraint.

Algorithm 2 DiAMetR: Meta-test phase
1: Given: ptest(T), Π = {πϵimeta,θ}

M
i=1

2: Initialize TS = Thompson-Sampler()
3: for meta-episode n = 1, 2, ... do
4: Choose meta-policy i = TS.sample()
5: Run πϵimeta,θ for meta-episode
6: TS.update(

arm=i,
reward=meta-episode return)

7: end for

Test-time meta-policy selection: Since test-time
meta-policy selection can be framed as a multi-armed
bandit problem, we use a generic Thompson’s sam-
pling [41] algorithm (see Algorithm 2). Each meta-
episode n, we sample a meta-policy πϵmeta with prob-
ability proportional to its estimated average episodic
reward, run the sampled meta-policy πϵmeta for an
meta-episode (k environment episodes) and then up-
date the estimate of the average episodic reward.
Since Thompson’s sampling is a zero-regret bandit
algorithm, it will converge to the meta-policy that
achieves the highest average episodic reward and
lowest regret on the test task distribution.

6 Experimental Evaluation

(a) Wheeled navigation (b) Ant navigation (c) Fetch reach (d) Block push

Figure 4: The agent needs to either navigate, move its gripper or push the block to an unobserved target location,
indicated by green sphere, by exploring its environment and experiencing reward.

We aim to comprehensively evaluate DiAMetR and answer the following questions: (1) Do meta-
policies learned via DiAMetR allow for quick adaptation under different distribution shifts in the
test-time task distribution? (2) Does learning for multiple levels of robustness actually help the

7

algorithm adapt more effectively than a particular chosen uncertainty level? (3) Does proposing
uncertainty sets via generative modeling provide useful distributions of tasks for robustness?

Setup. We train DiAMetR on four continuous control environments: Wheeled navigation [11]
(Wheeled driving a differential drive robot), Ant navigation (Ant controlling a four legged robotic
quadruped), Fetch reach and Block push [11] (Figures 4a to 4d) (see Appendix H for more
details). Each environment has a train task distribution Ti ∼ ptrain(T) such that each task Ti
parameterizes a reward function ri(s, a) := r(s, a, Ti). Ti itself remains unobserved, the agent
simply has access to reward values and executing actions in the environment. The meta-policies
are evaluated on train task distribution ptrain(T) and on different distributionally shifted test task
distribution {pitest(T)}Ki=1. We use 4 random seeds for all our experiments and include the standard
error bars in our plots. In all of these problems, the distribution of train and test tasks is determined
by the distribution of the underlying target locations st, which determines the reward function (exact
distributions in Table 1). Since these environments have sparse rewards, DiAMetR uses a structured
VAE to model reward distributions (see Appendix C for more details).

6.1 Adaptation to Varying Levels of Distribution Shift

During meta test, given a test task distribution ptest(T), DiAMetR uses Thompson sampling to select
the appropriate meta-policy πϵmeta,θ within N = 250 meta episodes. πϵmeta,θ can then solve any task
T ∼ ptest(T) within 1 meta episode (k = 2 environment episode). Since DiAMetR adaptively
chooses a meta-policy during test time, we compare it to RL2 with test time finetuning. Figure 5
shows that RL2’s performance more or less remains the same after test time finetuning showing
that 10 iteration (with 25 meta-episodes per iteration) isn’t enough for RL2 to learn an meta-policy
for a new task distribution. For comparison, RL2 takes 1500 iterations (with 25 meta-episodes per
iteration) during training to learn a meta-policy for train task distribution.

Figure 5: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on different environ-
ments. We run the adaptation procedure for 10 iterations collecting 25 meta-episodes per iteration. The test target
distance distribution for {Wheeled,Ant}-navigation is U(0.65, 0.70), for Fetch reach is U(0.65, 0.70)
and for Block push is U(0.9, 1.0). We provide test time adaptation comparisons on other test target distance
distributions in Appendix G.

To test DiAMetR’s ability to adapt to varying levels of distribution shift, we evaluate it on the
above mentioned test task distributions. We compare DiAMetR with meta RL algorithms such as
(off-policy) RL2 [29], VariBAD [46] and HyperX [47]. Figure 6 shows that DiAMetR outperforms
RL2, VariBAD and HyperX on test task distributions. Furthermore, the performance gap between
DiAMetR and other baselines increase as distribution shift between test task distribution and train task
distribution increases. Naturally, the performance of DiAMetR also deteriorates as the distribution
shift is increased, but as shown in Fig 6, it does so much more slowly than other algorithms. We
also evaluate DiAMetR on train task distribution to see if it incurs any performance loss. Figure 6
shows that DiAMetR either matches or outperforms RL2, VariBAD, and HyperX on the train task
distribution. We refer readers to Appendix D for results on point-navigation environment and
Appendix E for ablation studies and further experimental evaluations.

6.2 Analysis of Tasks Proposed by Latent Conditional Uncertainty Sets

We visualize the imagined test reward distribution for various distribution shifts. Specifically, we
create a heatmap of imagined test reward functions. Figure 7 visualizes the imagined test reward
distribution in Ant-navigation environment in increasing order of distribution shifts with respect
to train reward distribution (with distribution shift parameter ϵ increasing from left to right). The train

8

Figure 6: We evaluate DiAMetR and meta RL algorithms (RL2, VariBAD and HyperX) on training task
distribution and different test task distributions. DiAMetR outperforms RL2, VariBAD and HyperX on train
distributions and different test distributions. The first point rtrain on the horizontal axis indicates the training target
distance ∆ distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target ∆ distribution
U(ri−1

test , ritest).

(a) ϵ = 0.1 (b) ϵ = 0.2 (c) ϵ = 0.4 (d) ϵ = 0.8

Figure 7: Imagined test reward distributions in Ant-navigation environment in increasing order of distribution
shifts. Train reward distribution is uniform within the red circle.

distribution of rewards has uniformly distributed target locations within the red circle. As clearly seen
in Figure 7, as we increase the distribution shifts, the learned reward distribution model imagines
more target locations outside the red circle.

6.3 Analysis of Importance of Multiple Uncertainty Sets

DiAMetR meta-learns a family of adaptation policies, each conditioned on different uncertainty set.
As discussed in section 4, selecting a policy conditioned on a large uncertainty set would lead to
overly conservative behavior. Furthermore, selecting a policy conditioned on a small uncertainty set
would result in failure if the test time distribution shift is high. Therefore, we need to adaptively
select an uncertainty set during test time. To validate this phenomenon empirically, we performed
an ablation study in Figure 8. As clearly visible, adaptively choosing an uncertainty set during test
time allows for better test time distribution adaptation when compared to selecting an uncertainty
set beforehand or selecting a large uncertainty set. These results suggest that a combination of
training robust meta-learners and constructing various uncertainty sets allows for effective test-time
adaptation under distribution shift. DiAMetR is able to avoid both overly conservative behavior and
under-exploration at test-time.

Figure 8: Adaptively choosing an uncertainty set for DiAMetR policy (Adapt) during test time allows it to
better adapt to test time distribution shift than choosing an uncertainty set beforehand (Mid). Choosing a large
uncertainty set for DiAMetR policy (Conservative) leads to a conservative behavior and hurts its performance
when test time distribution shift is low. The first point rtrain on the horizontal axis indicates the training target
distance ∆ distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target distance ∆
distribution U(ri−1

test , ritest).

9

7 Discussion
In this work, we discussed the challenge of distribution shift in meta-reinforcement learning and
showed how we can build meta-reinforcement learning algorithms that are robust to varying levels
of distribution shift. We show how we can build distributionally “adaptive" reinforcement learning
algorithms that can adapt to varying levels of distribution shift, retaining a tradeoff between fast
learning and maintaining asymptotic performance. We then show we can instantiate this algorithm
practically by parameterizing uncertainty sets with a learned generative model. We empirically
showed that this allows for learning meta-learners robust to changes in task distribution.

There are several avenues for future work we are keen on exploring, for instance extending adaptive
distributional robustness to more complex meta RL tasks, including those with differing transition
dynamics. Another interesting direction would be to develop a more formal theory providing adaptive
robustness guarantees in meta-RL problems under these inherent distribution shifts.

References
[1] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In A. Faust,

D. Hsu, and G. Neumann, editors, Proceedings of the 5th Conference on Robot Learning,
volume 164 of Proceedings of Machine Learning Research, pages 297–307. PMLR, 08–11 Nov
2022. URL https://proceedings.mlr.press/v164/chen22a.html.

[2] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smooth-
ing. In International Conference on Machine Learning, pages 1310–1320. PMLR, 2019.

[3] L. Collins, A. Mokhtari, and S. Shakkottai. Distribution-agnostic model-agnostic meta-learning.
CoRR, abs/2002.04766, 2020. URL https://arxiv.org/abs/2002.04766.

[4] T. Deleu and Y. Bengio. The effects of negative adaptation in model-agnostic meta-learning.
arXiv preprint arXiv:1812.02159, 2018.

[5] R. Dorfman, I. Shenfeld, and A. Tamar. Offline meta learning of exploration. arXiv preprint
arXiv:2008.02598, 2020.

[6] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast reinforce-
ment learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

[7] A. Fallah, A. Mokhtari, and A. Ozdaglar. Generalization of model-agnostic meta-learning
algorithms: Recurring and unseen tasks. Advances in Neural Information Processing Systems,
34, 2021.

[8] A. Filos, P. Tigkas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal. Can autonomous
vehicles identify, recover from, and adapt to distribution shifts? In International Conference on
Machine Learning, pages 3145–3153. PMLR, 2020.

[9] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

[10] A. Gupta, B. Eysenbach, C. Finn, and S. Levine. Unsupervised meta-learning for reinforcement
learning. arXiv preprint arXiv:1806.04640, 2018.

[11] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine. Meta-reinforcement learning of
structured exploration strategies. Advances in neural information processing systems, 31, 2018.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[13] J. Hong, H. Wang, Z. Wang, and J. Zhou. Federated robustness propagation: Sharing adversarial
robustness in federated learning. arXiv preprint arXiv:2106.10196, 2021.

[14] A. Jabri, K. Hsu, A. Gupta, B. Eysenbach, S. Levine, and C. Finn. Unsupervised curricula for
visual meta-reinforcement learning. Advances in Neural Information Processing Systems, 32,
2019.

10

https://proceedings.mlr.press/v164/chen22a.html
https://arxiv.org/abs/2002.04766

[15] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks:
Combating covariate shift in model-free imitation learning for fine manipulation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6185–6191. IEEE, 2021.

[16] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[17] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[18] L. Lee, B. Eysenbach, E. Parisotto, E. P. Xing, S. Levine, and R. Salakhutdinov. Efficient
exploration via state marginal matching. CoRR, abs/1906.05274, 2019. URL http://arxiv.
org/abs/1906.05274.

[19] Z. Lin, G. Thomas, G. Yang, and T. Ma. Model-based adversarial meta-reinforcement
learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
73634c1dcbe056c1f7dcf5969da406c8-Abstract.html.

[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[21] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via reinforce-
ment learning. arXiv preprint arXiv:2205.02824, 2022.

[22] R. Mendonca, X. Geng, C. Finn, and S. Levine. Meta-reinforcement learning robust to distribu-
tional shift via model identification and experience relabeling. CoRR, abs/2006.07178, 2020.
URL https://arxiv.org/abs/2006.07178.

[23] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[24] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner.
arXiv preprint arXiv:1707.03141, 2017.

[25] E. Mitchell, R. Rafailov, X. B. Peng, S. Levine, and C. Finn. Offline meta-reinforcement
learning with advantage weighting. In International Conference on Machine Learning, pages
7780–7791. PMLR, 2021.

[26] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learning to
adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint
arXiv:1803.11347, 2018.

[27] A. Nair, A. Gupta, M. Dalal, and S. Levine. Awac: Accelerating online reinforcement learning
with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[28] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

[29] T. Ni, B. Eysenbach, S. Levine, and R. Salakhutdinov. Recurrent model-free RL is a strong base-
line for many POMDPs, 2022. URL https://openreview.net/forum?id=E0zOKxQsZhN.

[30] T. P. Oikarinen, W. Zhang, A. Megretski, L. Daniel, and T. Weng. Robust deep reinforcement
learning through adversarial loss. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 26156–26167, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html.

11

http://arxiv.org/abs/1906.05274
http://arxiv.org/abs/1906.05274
https://proceedings.neurips.cc/paper/2020/hash/73634c1dcbe056c1f7dcf5969da406c8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/73634c1dcbe056c1f7dcf5969da406c8-Abstract.html
https://arxiv.org/abs/2006.07178
https://openreview.net/forum?id=E0zOKxQsZhN
https://proceedings.neurips.cc/paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/dbb422937d7ff56e049d61da730b3e11-Abstract.html

[31] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.
In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 2817–2826. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/pinto17a.html.

[32] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-reinforcement
learning via probabilistic context variables. In International conference on machine learning,
pages 5331–5340. PMLR, 2019.

[33] A. Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory
of Statistics, volume 4, pages 547–562. University of California Press, 1961.

[34] J. Rothfuss, D. Lee, I. Clavera, T. Asfour, and P. Abbeel. Promp: Proximal meta-policy search.
arXiv preprint arXiv:1810.06784, 2018.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017. URL http://dblp.uni-trier.de/db/
journals/corr/corr1707.html#SchulmanWDRK17.

[36] A. Sinha, H. Namkoong, R. Volpi, and J. Duchi. Certifying some distributional robustness with
principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

[37] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Advances in neural information processing systems,
12, 1999.

[38] S. Thrun and L. Y. Pratt, editors. Learning to Learn. Springer, 1998. ISBN 978-
1-4613-7527-2. doi: 10.1007/978-1-4615-5529-2. URL https://doi.org/10.1007/
978-1-4615-5529-2.

[39] L. N. Vaserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

[40] E. Vinitsky, Y. Du, K. Parvate, K. Jang, P. Abbeel, and A. M. Bayen. Robust reinforcement
learning using adversarial populations. CoRR, abs/2008.01825, 2020. URL https://arxiv.
org/abs/2008.01825.

[41] D. Wolpert and W. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.585893.

[42] M. Wu, N. Goodman, C. Piech, and C. Finn. Prototransformer: A meta-learning approach to
providing student feedback. arXiv preprint arXiv:2107.14035, 2021.

[43] A. Xie, S. Sodhani, C. Finn, J. Pineau, and A. Zhang. Robust policy learning over multiple
uncertainty sets. arXiv preprint arXiv:2202.07013, 2022.

[44] H. Zhang, H. Chen, D. S. Boning, and C. Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=sCZbhBvqQaU.

[45] T. Z. Zhao, A. Nagabandi, K. Rakelly, C. Finn, and S. Levine. Meld: Meta-reinforcement
learning from images via latent state models. arXiv preprint arXiv:2010.13957, 2020.

[46] L. Zintgraf, K. Shiarlis, M. Igl, S. Schulze, Y. Gal, K. Hofmann, and S. Whiteson.
Varibad: A very good method for bayes-adaptive deep rl via meta-learning. arXiv preprint
arXiv:1910.08348, 2019.

[47] L. M. Zintgraf, L. Feng, C. Lu, M. Igl, K. Hartikainen, K. Hofmann, and S. Whiteson. Ex-
ploration in approximate hyper-state space for meta reinforcement learning. In International
Conference on Machine Learning, pages 12991–13001. PMLR, 2021.

12

http://proceedings.mlr.press/v70/pinto17a.html
http://proceedings.mlr.press/v70/pinto17a.html
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://doi.org/10.1007/978-1-4615-5529-2
https://doi.org/10.1007/978-1-4615-5529-2
https://arxiv.org/abs/2008.01825
https://arxiv.org/abs/2008.01825
https://openreview.net/forum?id=sCZbhBvqQaU

A Test time Meta Policy Selection

As discussed in Section 4, to adapt to test time task distribution shifts, we train a family of meta-
policies Π = {πϵimeta} to be robust to varying degrees of distribution shifts. We then choose the
appropriate meta-policy during test-time based on the inferred task distribution shift. In this section,
we frame the test-time selection of meta-policy from the family Π as a stochastic multi-arm bandit
problem. Every iteration involves pulling an arm i which corresponds to executing πϵimeta for 1 meta-
episode (k environment episodes) on a task T ∼ ptest(T). Let Ri be the expected return for pulling
arm i

Ri = Eπϵimeta,T ∼ptest(T)

[
1

k

k∑
i=1

T∑
t=1

r
(i)
t

]
(7)

Let R∗ = maxi∈{1,...,M} Ri and πϵmeta be the corresponding meta-policy. The goal of the stochastic
bandit problem is to pull arms i1, . . . , iN ∈ {1, . . . ,M} such that the test-time regret RN is
minimized

Rtest
N = NR∗ −

N∑
t=1

Rit (8)

with constraint that it can depend only on the information available prior to iteration t. We choose
Thompson sampling, a zero-regret bandit algorithm, to solve this problem. In principle, Thompson
sampling should learn to choose πϵmeta after N iterations.

B DiAMetR with Generative Models

To learn a robust meta-policy, we need to define uncertainty sets which are parameterized via q(T)
and the probability divergence D(·||·). In Section 5, we parameterize task (i.e. reward function)
distribution as latent space distributions qϕ(z) and measure the divergence between train and test
task distribution via KL divergence in latent space D(ptrain(z)||qϕ(z)). In this section, we show
the distributionally robust meta reinforcement learning objective (eq 3) resulting from the above-
mentioned task distribution parameterization:

max
θ

min
ϕ

Ez∼qϕ(z)

[
Eπϵmeta,θ,P

[
1

k

k∑
i=1

T∑
t=1

rω(s
(i)
t , a

(i)
t , z)

]]
DKL(ptrain(z)||qϕ(z)) ≤ ϵ (9)

This objective function is solved in Algorithm 1 for different values of ϵ.

C Structured VAE for modelling reward distributions

In Section 5, we show how to learn reward function distribution with a variational autoencoder
(VAE) [16]. In this section, we leverage the sparsity in reward functions (i.e. 0/1 rewards) in the
environments used and describe a structured VAE to model rω(s, a, z) with p(z) = N (0, I) and
KL-divergence for D(·||·). Let h = (

∑T
t=1 rtst)/(

∑T
t=1 rt) be the mean of states achieving a +1

reward in trajectory h. The encoder z ∼ qψ(z|h) encodes h into a latent vector z. The reward model

rω(s, a, z) consists of 2 components: (i) latent decoder ĥ = rhω(z) which reconstructs h and (ii)

reward predictor rrew
ω (s, ĥ) = exp(−∥M ⊙ (s− ĥ)∥22/σ2) which predicts reward for a state given the

decoded latent vector. M is a masking function and σ is a learned parameter. The training objective
becomes

min
ω,ψ

Eh∼D

[
Ez∼qψ(z|h)

[∥∥h− rhω(z)
∥∥2
2
+

T∑
t=1

∥∥rrew
ω (st, r

h
ω(z))− rt

∥∥2]+DKL(qψ(z|h)||p(z))

]
(10)

The structure in the VAE helps in extrapolating reward functions when z ∼ qϕ(z). This can be further
verified by reduction in DiAMetR’s performance on test-task distributions when using vanilla VAE
(see Figure 9).

13

Figure 9: Using a vanilla VAE, in lieu of a structured VAE, to model task distribution hurts DiAMetR’s
performance on test-task distributions.

D Experimental Evaluation on Point Robot Navigation

In Section 6, we evaluated DiAMetR on Wheeled-navigation, Ant-navigation, Fetch-reach
and Block-push. We continue the experimental evaluation of DiAMetR in this section and compare
it to RL2, VariBAD, and HyperX on train task distribution and different test task distributions of
Point-navigation environment. We see that DiAMetR either matches or outperforms the baselines
on train task distribution and outperforms the baselines on test task distributions. Furthermore, adap-
tively selecting an uncertainty set during test time allows for better test time distribution adaptation
when compared to selecting an uncertainty set beforehand or selecting a large uncertainty set.

Figure 10: We evaluate DiAMetR and meta RL algorithms (RL2, VariBAD and HyperX) on training goal
distribution and different test goal distributions of Point-navigation environment. DiAMetR outperforms
RL2, VariBAD and HyperX on train goal distribution and different test goal distributions. Furthermore, adaptively
selecting an uncertainty set of DiAMetR policy (Adapt) during test time allows it to better adapt to test time
distribution shift than choosing an uncertainty set beforehand (Mid). Choosing a large uncertainty set of
DiAMetR policy (Conservative) leads to a conservative behavior and hurts its performance when test time
distribution shift is low. The first point rtrain on the horizontal axis indicates the training target distance ∆
distribution U(0, rtrain) and the subsequent points ritest indicate the shifted test target distance ∆ distribution
U(ri−1

test , ritest).

E Ablation studies

Can improved meta-exploration help a meta-RL algorithm achieve robustness to test-time task
distribution shifts? To test if improved meta-exploration can help meta-RL algorithm achieve
robustness to test-time task distribution shifts, we test HyperX [47] on test-task distributions in
different environments. HyperX leverages curiosity-driven exploration to visit novel states for
improved meta-exploration during meta-training. Despite improved meta-exploration, HyperX fails
to adapt to test-time task distribution shifts (see Figure 10 for results on Point-navigation and
Figure 6 for results on other environments). This is because HyperX aims to minimize regret on
train-task distribution and doesn’t leverage the visited novel states to learn new behaviors helpful in
adapting to test-time task distribution shifts. Furthermore, we note that the contributions of HyperX is
complementary to our contributions as improved meta-exploration would help us better learn robust
meta-policies.

14

Figure 11: Both SAC trained from scratch (SAC scratch) and SAC pre-trained on training task distribution (SAC
finetune) take more than a million timesteps to solve test tasks. In comparison, DiAMetR takes 30k timesteps to
select the right meta-policy which then solves new tasks from test distribution in k − 1 environment episodes
(i.e. 60 timesteps given k = 2 and horizon H = 60).

Can RL quickly solve test time tasks? To test if RL can quickly solve test-time tasks, we train
Soft Actor Critic (SAC) [12] on 5 tasks sampled from a particular test task distribution. To make the
comparison fair, we include a baseline that pre-trains SAC on train-task distribution. Figure 11 shows
results on Point-navigation. We see that both SAC trained from scratch and SAC pre-trained
on training task distribution take more than a million timesteps to solve test tasks. In comparison,
DiAMetR takes 30k timesteps to select the right meta-policy which then solves new tasks from test
distribution in k− 1 environment episodes (i.e. 60 timesteps given k = 2 and horizon H = 60). This
shows that meta-RL formulation is required for quick-adaptation to test tasks.

F Proof of Proposition 4.1

In this section, we prove the proposition in the main text about the excess regret of an ϵ2-robust
policy under and ϵ1-perturbation (restated below).

Proposition 4.1. Let ϵi = min{ϵi + β, 1− |S0|
|S| }. There exists q(T) satisfying DTV (ptrain, q) ≤ ϵ1

where an ϵ2-robust meta policy incurs excess regret over the optimal ϵ1-robust meta-policy:

Eq(T)[Regret(π
ϵ2
meta, T)− Regret(πϵ1meta, T)] ≥

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)√
ϵ1(1− ϵ1)|S0|(|S| − S0|)

(5)

The scale of regret depends on c(ϵ1, ϵ2) =
√

ϵ2
−1−1

ϵ1−1−1
, a measure of the mismatch between ϵ1 and ϵ2.

Summary of proof: The proof proceeds in three stages: 1) deriving a form for the optimal meta-policy
for a fixed task distribution 1) proving that the optimal ϵ-robust meta-policy takes form:

πϵmeta(s) ∝


√

1−ϵ
|S0| s ∈ S0√

ϵ
|S|−|S0| s /∈ S0

and finally 3) showing that under the task distribution p(Tg) = (1 − ϵ1)Uniform(S0) +
ϵ1Uniform(S\S0), the gap in regret takes the form in the proposition.

Proof. For convenience, denote S1 = S\S0 and Regret(πmeta, q(T)) = Eq[Regret(π, T)]. Further-
more, since the performance of a meta-policy depends only on its final-timestep visitation distribution
(and any such distribution is attainable), we directly refer to π(g) as the visited goal distribution of
the meta-policy πmeta. Recall that the regret of πmeta on task Tg is given by 1

π(g) .

We begin with the following lemma that demonstrates the optimal policy for a fixed task distribution.

Lemma F.1. The optimal meta-policy π∗
q = argminπ Regret(π, q(Tg)) for a given task distribution

q(Tg) is given by

π∗
q (g) =

1∫ √
q(g′) dg′

√
q(g) (11)

The proof of the lemma is similar to the argument in Gupta et al. [10], Lee et al. [18]:

15

π∗
q = argmin

π(g)

Regret(π, q(Tg)) = argmin
π(g)

ETg∼q[
1

π(g)
] (12)

Letting Z =
∫
g

√
q(g), we can rewrite the optimization problem as minimizing an f -divergence

(with f(x) = 1
x)

=

∫
1

π(g)
q(g) dg (13)

= Z2

∫ √
q(g)/Z

π(g)

√
q(g)/Z dg (14)

= Z2Df (π∥
√
q(g)/Z) (15)

This is minimized when both are equal, i.e. when π∗
q (g) =

√
q/Z, concluding the proof.

Lemma F.2. The optimal ϵ-robust meta-policy π∗ϵ = argminR(π, ptrain, ϵ) takes form

πϵ(g) ∝


√

1−ϵ
|S0| g ∈ S0√

ϵ
|S|−|S0| g /∈ S0

Define the distribution qϵ(Tg) = (1− ϵ)Uniform(S0)+ ϵUniform(S\S0) , which is an ϵ-perturbation
of ptrain under the TV metric. We note that there are two main cases: 1) if ϵ = 1− |S0|

|S| , then qϵ is
uniform over the entire state space, and otherwise 2) it corresponds to uniformly taking ϵ-mass from
S0 and uniformly distributing it across S1. Using the lemma, we can derive the optimal policy for qϵ,
which we denote πϵ:

πϵ = argmin
π(g)

Regret(π, qϵ(T)) =
1∫ √

qϵ(g′) dg′

√
q(g), (16)

Writing Zϵ =
∫ √

q(g′) dg′, we can write this explicitly as

=
1

Zϵ


√

1−ϵ
|S0| g ∈ S0√

ϵ
|S|−|S0| g /∈ S0

(17)

We now show that there exists no other distribution q′(T) with TV (ptrain, q
′) ≤ ϵ for which

Regret(πϵ, q′) ≥ Regret(πϵ, qϵ). We break this into the two cases for qϵ: if qϵ is uniform over all
goals, then πϵ visits all goals equally often, and so incurs the same regret on every task distribution.
The more interesting case is the second: consider any other task distribution q′(g), and let q′0, q

′
1 be

the probabilities of sampling goals in S0 and S1 respectively under q′: q′0 = Eg∼q′ [1(g ∈ S0)] and
q′1 = 1− q′0. The regret of πϵ on q′ is given by

Regret(πϵ, q′(T)) = Eg∼q′ [
1

1
Zϵ

√
q(g)

] (18)

= Zϵ(q
′
0

√
|S0|
1− ϵ

+ q′1

√
|S| − |S0|

ϵ
) (19)

By construction of ϵ, we have that
√

|S|−|S0|
ϵ ≥

√
|S0|
1−ϵ , and so this expression is maximized for the

largest value of q′1. Under a ϵ-perturbation in the TV metric, the maximal value of q1 is given by
β + ϵ = ϵ :

≤ Zϵ((1− ϵ)

√
|S0|
1− ϵ

+ ϵ

√
|S| − |S0|

ϵ
) (20)

This is exactly the regret under our chosen task proposal distribution qϵ(T) (which has q1 = ϵ)

= Regret(πϵ, qϵ(T)). (21)

16

These two steps can be combined to demonstrate that πϵ is a solution to the robust objective.
Specifically, we have that

R(πϵ, ptrain, ϵ) = max
q′:TV (ptrain,q′)≤ϵ

Regret(πϵ, q
′) = Regret(πϵ, q

ϵ)

(22)

so, for any other meta-policy πmeta, we have

R(π, ptrain, ϵ) = max
q′:TV (ptrain,q′)≤ϵ

Regret(π, q′) ≥ Regret(π, qϵ) ≥ Regret(πϵ, qϵ) = R(πϵ, ptrain, ϵ)

(23)

This concludes the proof of the lemma.

Finally, to complete the proof of the original proposition, we write down (and simplify) the gap in
regret between πϵ1 and πϵ2 for the task distribution qϵ1 (as described above). We begin by writing
down the regret of πϵ1 :

Regret(πϵ1 , qϵ1(T)) = Zϵ1((1− ϵ1)

√
|S0|
1− ϵ1

+ ϵ1

√
|S1|
ϵ1

) (24)

= (
√
|S0|(1− ϵ1) +

√
|S1|(ϵ1))((1− ϵ1)

√
|S0|
1− ϵ1

+ ϵ1

√
|S1|
ϵ1

) (25)

= (1− ϵ1)|S0|+ ϵ1|S1|+ 2
√
ϵ1(1− ϵ1)|S0||S1| (26)

Next, we write the regret of πϵ2

Regret(πϵ2 , qϵ1(T)) = Zϵ2((1− ϵ1)

√
|S0|
1− ϵ2

+ ϵ1

√
|S1|
ϵ2

) (27)

= (
√
|S0|(1− ϵ2) +

√
|S1|(ϵ2))((1− ϵ1)

√
|S0|
1− ϵ2

+ ϵ1

√
|S1|
ϵ2

) (28)

= (1− ϵ1)|S0|+ ϵ1|S1|+ ϵ1

√
|S0||S1|

(1− ϵ2)

ϵ2
+ (1− ϵ1)

√
|S0||S1|

(ϵ2)

1− ϵ2
(29)

= (1− ϵ1)|S0|+ ϵ1|S1|+ ϵ1

√
|S0||S1|

(1− ϵ2)

ϵ2
+ (1− ϵ1)

√
|S0||S1|

(ϵ2)

1− ϵ2
(30)

= (1− ϵ1)|S0|+ ϵ1|S1|+
√

|S0|S1|ϵ1(1− ϵ1)

(√
ϵ1

(1− ϵ1)

(1− ϵ2)

ϵ2
+

√
(1− ϵ1)

ϵ1

ϵ2
(1− ϵ2)

)
(31)

Now writing c(ϵ1, ϵ2) =
√

ϵ2−1−1
ϵ1−1−1

=
√

1−ϵ2
ϵ2

ϵ1
1−ϵ1

= (1− ϵ1)|S0|+ ϵ1|S1|+
√

|S0|S1|ϵ1(1− ϵ1)

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)

)
(32)

= Regret(πϵ1 , qϵ1(T)) +
√
|S0|S1|ϵ1(1− ϵ1)

(
c(ϵ1, ϵ2) +

1

c(ϵ1, ϵ2)
− 2

)
(33)

This concludes the proof of the proposition.

17

G Meta-agent Selection and Adaptation during Meta-test

In this section, we show that DiAMetR is able adapt to various test task distributions across different
environments by selecting an appropriate meta-agent based on the inferred test-time distribution shift
and then quickly adapting the meta-agent to different tasks drawn from the test-distribution. RL2’s
performance remains more or less the same after test-time finetuning showing that 10 iteration (with
25 rollouts per iteration) isn’t enough for RL2 to learn an adaptive policy for a new task distribution.

(a) ∆g ∼ U(0.5, 0.55) (b) ∆g ∼ U(0.55, 0.6) (c) ∆g ∼ U(0.6, 0.65) (d) ∆g ∼ U(0.65, 0.7)

Figure 12: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on point robot
navigation for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25
rollouts per iteration.

(a) ∆g ∼ U(0.5, 0.55) (b) ∆g ∼ U(0.55, 0.6) (c) ∆g ∼ U(0.6, 0.65) (d) ∆g ∼ U(0.65, 0.7)

Figure 13: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on wheeled navigation
for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

(a) ∆g ∼ U(0.5, 0.55) (b) ∆g ∼ U(0.55, 0.6) (c) ∆g ∼ U(0.6, 0.65) (d) ∆g ∼ U(0.65, 0.7)

Figure 14: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on ant navigation
for various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

18

(a) ∆g ∼ U(0.1, 0.12) (b) ∆g ∼ U(0.12, 0.14) (c) ∆g ∼ U(0.14, 0.16)

(d) ∆g ∼ U(0.16, 0.18) (e) ∆g ∼ U(0.18, 0.20)

Figure 15: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on fetch reach for
various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

(a) ∆g ∼ U(0.5, 0.6) (b) ∆g ∼ U(0.6, 0.7) (c) ∆g ∼ U(0.7, 0.8)

(d) ∆g ∼ U(0.8, 0.9) (e) ∆g ∼ U(0.9, 1.0)

Figure 16: We compare test time adaptation of DiAMetR with test time finetuning of RL2 on block push for
various test task distributions. We run the adaptation procedure for 10 iterations collecting 25 rollouts per
iteration.

H Environment Description

We describe the environments used in Section 6 and Appendix D of the paper:

• {Point,Wheeled,Ant}-navigation: The rewards for each task correspond to reaching an
unobserved target location st. The agent (i.e. Wheeled, Ant) must explore the environment to find
the unobserved target location (Wheeled driving a differential drive robot, Ant controlling a four
legged robotic quadruped). It receives a reward of 1 once it gets within a small δ distance of the
target st, as in [11].

• Fetch reach: Each task corresponds to moving the gripper to an unobserved target location st.
The Fetch robot must move its gripper around and explore the environment to find the unobserved
target location. Once the gripper gets within a small δ distance of the target st, it receives a reward
of 1.

19

• Block push: Each task corresponds to moving the block to an unobserved target location st. The
robot arm must move the block around and explore the environment to find the unobserved target
location. Once the block gets within a small δ distance of the target st, it receives a reward of 1, as
in [11].

Furthermore, Table 2 describes the state space S , action space A, episodic horizon H and frameskip
for each environment.

Name State space S Action space A Episodic Horizon H Frameskip

Point-navigation Box(2,) Box(2,) 60 1
Wheeled-navigation Box(12,) Box(2,) 200 10
Ant-navigation Box(29,) Box(8,) 60 5
Fetch reach Box(17,) Box(6,) 50 10
Block Push Box(10,) Box(4,) 60 10

Table 2: Environment Description

I Hyperparameters Used

Table 3 describes the hyperparameters used for the structured VAE for learning reward function
distribution

latent z dimension 16
p(z) N (0, I)
qψ(z|h) MLP(hidden-layers=[256, 256, 256])
rω(s, a, z) MLP(hidden-layers=[256, 256, 256])
Train trajectories (from train task replay buffer) 1e6/(Episodic Horizon H)
Train Epochs 100
initial log σ −5

Table 3: Hyperparameters for structured VAE

We use off-policy RL2 [29] as our base meta-learning algorithm. We borrow the implementa-
tion from https://github.com/twni2016/pomdp-baselines. We use the hyperparameters from the
config file https://github.com/twni2016/pomdp-baselines/blob/main/configs/meta/ant_dir/rnn.yml
but found 1500 num-iters was sufficient for convergence of the meta-RL algorithm.
Furthermore, we use 200 num-updates-per-iter. Our codebase can be found at
https://drive.google.com/drive/folders/1KTjst_n0PlR0O7Ez3-WVj0jbgnl1ELD3?usp=sharing.

We parameterize qϕ(z) as a normal distribution N (µ, σ) with ϕ = (µ, σ) as parameters. We use
REINFORCE with trust region constraints (i.e. Proximal Policy Optimization [35]) for optimizing
qϕ(z). We borrow our PPO implementation from the package https://github.com/ikostrikov/pytorch-
a2c-ppo-acktr-gail and default hyperparameters from https://github.com/ikostrikov/pytorch-a2c-ppo-
acktr-gail/blob/master/a2c_ppo_acktr/arguments.py. Table 4 describes the hyperparameters for PPO
that we changed.

num-processes 1
ppo-epoch 10
num-iters 3
num-env-trajectories-per-iter 100

Table 4: Hyperparameters for PPO for training qϕ per every meta-RL iteration

We use off-policy VariBAD [5] implementation from the package https://github.com/twni2016/pomdp-
baselines/tree/main/BOReL with their default hyperparameters. We use HyperX [47] implementation
from the package https://github.com/lmzintgraf/hyperx with their default hyperparameters. To make

20

the comparisons fair, we ensure that the policy and the Q-function in VariBAD and HyperX have
same architecture as that in off-policy RL2 [29].

21

	Introduction
	Related Work
	Preliminaries
	Distributionally Adaptive Meta-Reinforcement Learning
	Known Level of Test-Time Distribution Shift
	Handling Arbitrary Levels of Distribution Shift
	Analysis

	DiAMetR: A Practical Algorithm for Meta-Distribution Shift
	Experimental Evaluation
	Adaptation to Varying Levels of Distribution Shift
	Analysis of Tasks Proposed by Latent Conditional Uncertainty Sets
	Analysis of Importance of Multiple Uncertainty Sets

	Discussion
	Test time Meta Policy Selection
	DiAMetR with Generative Models
	Structured VAE for modelling reward distributions
	Experimental Evaluation on Point Robot Navigation
	Ablation studies
	Proof of Proposition 4.1
	Meta-agent Selection and Adaptation during Meta-test
	Environment Description
	Hyperparameters Used

