一、技术范式突破:零样本驱动的空间智能引擎
AvatarGO的核心理念在于构建跨模态空间认知系统,通过三级架构实现文本到动态交互场景的端到端转换:
-
语义解耦层
集成CLIP-ViT与Lang-SAM模型,建立文本语义到三维空间坐标的映射体系。当输入"手持咖啡杯阅读"时,系统通过语义分割识别"手部-杯柄"接触区域,并基于SMPL-X骨架模型计算指关节弯曲角度(28°±3°),确保握持动作的物理合理性。 -
空间拓扑层
开发动态碰撞场(Dynamic Collision Field),采用隐式神经表示方法构建人体与物体的交互势能面。在生成端茶动作时,自动计算托盘与手掌接触面的压力分布,避免传统方法中63%的模型穿透率。 -
运动优化层
引入对应感知运动场(Correspondence-Aware Motion Field)