在文档解析领域,MonkeyOCR 由 Yuliang-Liu 团队开发的一款基于大语言模型(LLM)的轻量级文档解析工具,凭借其卓越的性能与高效的处理速度,正在重新定义多模态文档处理的标准。该模型在英文文档解析任务中超越了 Gemini 2.5 Pro 和 Qwen2.5-VL-72B 等主流模型,并在速度、公式识别、表格解析等关键指标上展现出显著优势。
🌟 项目简介
MonkeyOCR 是一款专注于结构化文档解析的轻量级 LLM 模型,采用创新的 “结构检测-内容识别-关系预测”三元组范式,在简化传统多工具流程的同时,避免了直接使用多模态模型处理整页文档的低效性。其核心目标是提供一种高效、精准且易于部署的文档解析解决方案,适用于学术、金融、法律等对文档处理要求极高的场景。
🔗 官方地址:https://github.com/Yuliang-Liu/MonkeyOCR
🔑 核心功能与性能亮点
1. 卓越的解析性能
- 英文文档解析性能:在英文文档解析任务中,MonkeyOCR 的 3B 参数版本平均性能超过 Gemini 2.5 Pro 和 Qwen2.5-VL-72B。
- 多页文档处理速度:
- 0.84 页/秒(3B 参数版本),远超 MinerU 的 0.65 页/秒 和 Qwen2.5-VL-7B 的 0.12 页/秒。