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Abstract

A novel variational autoencoder is developed to model images, as well as associated
labels or captions. The Deep Generative Deconvolutional Network (DGDN) is used
as a decoder of the latent image features, and a deep Convolutional Neural Network
(CNN) is used as an image encoder; the CNN is used to approximate a distribution
for the latent DGDN features/code. The latent code is also linked to generative
models for labels (Bayesian support vector machine) or captions (recurrent neural
network). When predicting a label/caption for a new image at test, averaging is
performed across the distribution of latent codes; this is computationally efficient as
a consequence of the learned CNN-based encoder. Since the framework is capable
of modeling the image in the presence/absence of associated labels/captions, a
new semi-supervised setting is manifested for CNN learning with images; the
framework even allows unsupervised CNN learning, based on images alone.

1 Introduction

Convolutional neural networks (CNNs) [1] are effective tools for image analysis [2], with most CNNs
trained in a supervised manner [2, 3, 4]. In addition to being used in image classifiers, image features
learned by a CNN have been used to develop models for image captions [5, 6, 7]. Most recent work
on image captioning employs a CNN for image encoding, with a recurrent neural network (RNN)
employed as a decoder of the CNN features, generating a caption.

While large sets of labeled and captioned images have been assembled, in practice one typically
encounters far more images without labels or captions. To leverage the vast quantity of these latter
images (and to tune a model to the specific unlabeled/uncaptioned images of interest at test), semi-
supervised learning of image features is of interest. To account for unlabeled/uncaptioned images,
it is useful to employ a generative image model, such as the recently developed Deep Generative
Deconvolutional Network (DGDN) [8, 9]. However, while the CNN is a feedforward model for image
features (and is therefore fast at test time), the original DGDN implementation required relatively
expensive inference of the latent image features. Specifically, in [8] parameter learning and inference
are performed with Gibbs sampling or Monte Carlo Expectation-Maximization (MCEM).

We develop a new variational autoencoder (VAE) [10] setup to analyze images. The DGDN [8] is
used as a decoder, and the encoder for the distribution of latent DGDN parameters is based on a
CNN (termed a “recognition model” [10, 11]). Since a CNN is used within the recognition model,
test-time speed is much faster than that achieved in [8]. The VAE framework manifests a novel means
of semi-supervised CNN learning: a Bayesian SVM [12] leverages available image labels, the DGDN
models the images (with or without labels), and the CNN manifests a fast encoder for the distribution
of latent codes. For image-caption modeling, latent codes are shared between the CNN encoder,
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DGDN decoder, and RNN caption model; the VAE learns all model parameters jointly. These models
are also applicable to images alone, yielding an unsupervised method for CNN learning.

Our DGDN-CNN model for images is related to but distinct from prior convolutional variational
auto-encoder networks [13, 14, 15]. In those models the pooling process in the encoder network is
deterministic (max-pooling), as is the unpooling process in the decoder [14] (related to upsampling
[13]). Our model uses stochastic unpooling, in which the unpooling map (upsampling) is inferred
from the data, by maximizing a variational lower bound.

Summarizing, the contributions of this paper include: (i) a new VAE-based method for deep decon-
volutional learning, with a CNN employed within a recognition model (encoder) for the posterior
distribution of the parameters of the image generative model (decoder); (ii) demonstration that the fast
CNN-based encoder applied to the DGDN yields accuracy comparable to that provided by Gibbs sam-
pling and MCEM based inference, while being much faster at test time; (iii) the first semi-supervised
CNN classification results, applied to large-scale image datasets; and (iv) extensive experiments
on image-caption modeling, in which we demonstrate the advantages of jointly learning the image
features and caption model (we also present semi-supervised experiments for image captioning).

2 Variational Autoencoder Image Model

2.1 Image Decoder: Deep Deconvolutional Generative Model

Consider N images {X(n)}Nn=1, with X(n) ∈ RNx×Ny×Nc ; Nx and Ny represent the number of
pixels in each spatial dimension, and Nc denotes the number of color bands in the image (Nc = 1 for
gray-scale images and Nc = 3 for RGB images).

To introduce the image decoder (generative model) in its simplest form, we first consider a decoder
with L = 2 layers. The code {S(n,k2,2)}K2

k2=1 feeds the decoder at the top (layer 2), and at the bottom
(layer 1) the image X(n) is generated:

Layer 2: S̃(n,2) =
∑K2

k2=1 D
(k2,2) ∗ S(n,k2,2) (1)

Unpool: S(n,1) ∼ unpool(S̃(n,2)) (2)

Layer 1: S̃(n,1) =
∑K1

k1=1 D
(k1,1) ∗ S(n,k1,1) (3)

Data Generation: X(n) ∼ N (S̃(n,1), α−10 I) (4)

Equation (4) is meant to indicate that E(X(n)) = S̃(n,1), and each element of X(n) − E(X(n)) is iid
zero-mean Gaussian with precision α0.

Concerning notation, expressions with two superscripts, D(kl,l), S(n,l) and S̃(n,l), for layer l ∈ {1, 2}
and image n ∈ {1, . . . , N}, are 3D tensors. Expressions with three superscripts, S(n,kl,l), are 2D
activation maps, representing the klth “slice” of 3D tensor S(n,l); S(n,kl,l) is the spatially-dependent
activation map for image n, dictionary element kl ∈ {1, . . . ,Kl}, at layer l of the model. Tensor S(n,l)

is formed by spatially aligning and “stacking” the {S(n,kl,l)}Kl

kl=1. Convolution D(kl,l) ∗ S(n,kl,l)

between 3D D(kl,l) and 2D S(n,kl,l) indicates that each of the Kl−1 2D “slices” of D(kl,l) is
convolved with the spatially-dependent S(n,kl,l); upon aligning and “stacking” these convolutions, a
tensor output is manifested for D(kl,l) ∗ S(n,kl,l) (that tensor has Kl−1 2D slices).

Assuming dictionary elements {D(kl,l)} are known, along with the precision α0. We now discuss
the generative process of the decoder. The layer-2 activation maps {S(n,k2,2)}K2

k2=1 are the code
that enters the decoder. Activation map S(n,k2,2) is spatially convolved with D(k2,2), yielding a 3D
tensor; summing over the K2 such tensors manifested at layer-2 yields the pooled 3D tensor S̃(n,2).
Stochastic unpooling (discussed below) is employed to go from S̃(n,2) to S(n,1). Slice k1 of S(n,1),
S(n,k1,1), is convolved with D(k1,1), and summing over k1 yields E(X(n)).

For the stochastic unpooling, S(n,k1,1) is partitioned into contiguous px × py pooling blocks (analo-
gous to pooling blocks in CNN-based activation maps [1]). Let z(n,k1,1)i,j ∈ {0, 1}pxpy be a vector

of pxpy − 1 zeros, and a single one; z(n,k1,1)i,j corresponds to pooling block (i, j) in S(n,k1,1). The
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location of the non-zero element of z(n,k1,1)i,j identifies the location of the single non-zero element
in the corresponding pooling block of S(n,k1,1). The non-zero element in pooling block (i, j) of
S(n,k1,1) is set to S̃(n,k1,2)

i,j , i.e., element (i, j) in slice k1 of S̃(n,2). Within the prior of the decoder,

we impose z(n,k1,1)i,j ∼ Mult(1; 1/(pxpy), . . . , 1/(pxpy)). Both S̃(n,2) and S(n,2) are 3D tensors with
K1 2D slices; as a result of the unpooling, the 2D slices in the sparse S(n,2) have pxpy times more
elements than the corresponding slices in the dense S̃(n,2).

The above model may be replicated to constitute L > 2 layers. The decoder is represented concisely
as pα(X|s, z), where vector s denotes the “unwrapped” set of top-layer features {S(·,kL,L)}, and
vector z denotes the unpooling maps at all L layers. The model parameters α are the set of dictionary
elements at the L layers, as well as the precision α0. The prior over the code is p(s) = N (0, I).

2.2 Image Encoder: Deep CNN

To make explicit the connection between the proposed CNN-based encoder and the above decoder,
we also initially illustrate the encoder with an L = 2 layer model. While the two-layer decoder in
(1)-(4) is top-down, starting at layer 2, the encoder is bottom-up, starting at layer 1 with image X(n):

Layer 1: C̃(n,k1,1) = X(n) ∗s F(k1,1) , k1 = 1, . . . ,K1 (5)

Pool: C(n,1) ∼ pool(C̃(n,1)) (6)

Layer 2: C̃(n,k2,2) = C(n,1) ∗s F(k2,2) , k2 = 1, . . . ,K2 (7)

Code Generation: sn ∼ N
(
µφ(C̃(n,2)), diag(σ2

φ(C̃(n,2)))
)

(8)

Image X(n) and filter F(k1,1) are each tensors, composed of Nc stacked 2D images (“slices”). To
implement X(n) ∗sF(k1,1), the respective spatial slices of X(n) and F(k1,1) are convolved; the results
of the Nc convolutions are aligned spatially and summed, yielding a single 2D spatially-dependent
filter output C̃(n,k1,1) (hence notation ∗s, to distinguish ∗ in (1)-(4)).

The 2D maps {C̃(n,k1,1)}K1

k1=1 are aligned spatially and “stacked” to constitute the 3D tensor C̃(n,1).
Each contiguous px × py pooling region in C̃(n,1) is stochastically pooled to constitute C(n,1); the
posterior pooling statistics in (6) are detailed below. Finally, the pooled tensor C(n,1) is convolved
with K2 layer-2 filters {F(k2,2)}K2

k2=1, each of which yields the 2D feature map C̃(n,k2,2); the K2

feature maps {C̃(n,k2,2)}K2

k2=1 are aligned and “stacked” to manifest C̃(n,2).

Concerning the pooling in (6), let C̃(n,k1,1)
i,j reflect the pxpy components in pooling block (i, j) of

C̃(n,k1,1). Using a multi-layered perceptron (MLP), this is mapped to the pxpy-dimensional real vec-

tor η(n,k1,1)
i,j = MLP(C̃

(n,k1,1)
i,j ), defined as η(n,k1,1)

i,j = W1h, with h = tanh
(
W2vec(C̃

(n,k1,1)
i,j )

)
.

The pooling vector is drawn z(n,k1,1)i,j ∼ Mult(1; Softmax(η
(n,k1,1)
i,j )); as a recognition model,

Mult(1; Softmax(η
(n,k1,1)
i,j )) is also treated as the posterior distribution for the DGDN unpooling in

(2). Similarly, to constitute functions µφ(C̃(n,2)) and σ2
φ(C̃(n,2)) in (8), each layer of C̃(n,2) is fed

through a distinct MLP. Details are provided in the Supplementary Material (SM).

Parameters φ of qφ(s, z|X) correspond to the filter banks {F(kl,l)}, as well as the parameters of
the MLPs. The encoder is a CNN (yielding fast testing), utilized in a novel manner to manifest a
posterior distribution on the parameters of the decoder. As discussed in Section 4, the CNN is trained
in a novel manner, allowing semi-supervised and even unsupervised CNN learning.

3 Leveraging Labels and Captions

3.1 Generative Model for Labels: Bayesian SVM

Assume a label `n ∈ {1, . . . , C} is associated with training image X(n); in the discussion that
follows, labels are assumed available for each image (for notational simplicity), but in practice only a
subset of the N training images need have labels. We design C one-versus-all binary SVM classifiers
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[16], responsible for mapping top-layer image features sn to label `n; sn is the same image code as
in (8), from the top DGDN layer. For the `-th classifier, with ` ∈ {1, . . . , C}, the problem may be
posed as training with {sn, y(`)n }Nn=1, with y(`)n ∈ {−1, 1}. If `n = ` then y(`)n = 1, and y(`)n = −1
otherwise. Henceforth we consider the Bayesian SVM for each one of the binary learning tasks, with
labeled data {sn, yn}Nn=1.

Given a feature vector s, the goal of the SVM is to find an f(s) that minimizes the objective function
γ
∑N
n=1 max(1− ynf(sn), 0)+R(f(s)), where max(1−ynf(sn), 0) is the hinge loss, R(f(s)) is

a regularization term that controls the complexity of f(s), and γ is a tuning parameter controlling the
trade-off between error penalization and the complexity of the classification function. Recently, [12]
showed that for the linear classifier f(s) = βTs, minimizing the SVM objective function is equivalent
to estimating the mode of the pseudo-posterior of β: p(β|S,y, γ) ∝

∏N
n=1 L(yn|sn,β, γ)p(β|·),

where y = [y1 . . . yN ]T , S = [s1 . . . sN ], L(yn|sn,β, γ) is the pseudo-likelihood function, and
p(β|·) is the prior distribution for the vector of coefficients β. In [12] it was shown thatL(yn|sn,β, γ)
admits a location-scale mixture of normals representation by introducing latent variables λn:

L(yn|sn,β, γ) = e−2γmax(1−ynβT sn,0) =
∫∞
0

√
γ√

2πλn
exp

(
− (1+λn−ynβT sn)

2

2γ−1λn

)
dλn. (9)

Note that (9) is a mixture of Gaussian distributions w.r.t. random variable ynβTsn, where the mixture
is formed with respect to λn, which controls the mean and variance of the Gaussians. This encourages
data augmentation for variable λn , permitting efficient Bayesian inference (see [12, 17] for details).

Parameters {β`}C`=1 for the C binary SVM classifiers are analogous to the fully connected parameters
of a softmax classifier connected to the top of a traditional CNN [2]. If desired, the pseudo-likelihood
of the SVM-based classifier can be replaced by a softmax-based likelihood. In Section 5 we compare
performance of the SVM and softmax based classifiers.

3.2 Generative Model for Captions

For image n, assume access to an associated caption Y(n); for notational simplicity, we again assume
a caption is available for each training image, although in practice captions may only be available
on a subset of images. The caption is represented as Y(n) = (y

(n)
1 , . . . ,y

(n)
Tn

), and y(n)
t is a 1-of-V

(“one-hot”) encoding, with V the size of the vocabulary, and Tn the length of the caption for image n.
Word t, y(n)

t , is embedded into an M -dimensional vector w(n)
t = Wey

(n)
t , where We ∈ RM×V is

a word embedding matrix (to be learned), i.e., w(n)
t is a column of We, chosen by the one-hot y(n)

t .

The probability of caption Y(n) given top-layer DGDN image features sn is defined as p(Y(n)|sn) =

p(y
(n)
1 |sn)

∏Tn

t=2 p(y
(n)
t |y

(n)
<t , sn). Specifically, we generate the first word y(n)

1 from sn, with
p(y

(n)
1 ) = softmax(Vh

(n)
1 ), where h(n)

1 = tanh(Csn). Bias terms are omitted for simplicity.
All other words in the caption are then sequentially generated using a recurrent neural network
(RNN), until the end-sentence symbol is generated. Each conditional p(y(n)

t |y
(n)
<t , sn) is specified as

softmax(Vh
(n)
t ), where h(n)

t is recursively updated through h(n)
t = H(w

(n)
t−1,h

(n)
t−1). C and V are

weight matrices (to be learned), and V is used for computing a distribution over words.

The transition function H(·) can be implemented with a gated activation function, such as Long
Short-Term Memory (LSTM) [18] or a Gated Recurrent Unit (GRU) [19]. Both LSTM and GRU
have been proposed to address the issue of learning long-term dependencies. In experiments we have
found that GRU provides slightly better performance than LSTM (we implemented and tested both),
and therefore the GRU is used.

4 Variational Learning of Model Parameters

To make the following discussion concrete, we describe learning and inference within the context
of images and captions, combining the models in Sections 2 and 3.2. This learning setup is also
applied to model images with associated labels, with the caption model replaced in that case with
the Bayesian SVM of Section 3.1 (details provided in the SM). In the subsequent discussion we
employ the image encoder qφ(s, z|X), the image decoder pα(X|s, z), and the generative model for
the caption (denoted pψ(Y|s), where ψ represents the GRU parameters).
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The desired parameters {φ,α,ψ} are optimized by minimizing the variational lower bound. For a
single captioned image, the variational lower bound Lφ,α,ψ(X,Y) can be expressed as

Lφ,α,ψ(X,Y) = ξ
{
Eqφ(s|X)[log pψ(Y|s)]

}
+ Eqφ(s,z|X)[log pα(X, s, z)− log qφ(s, z|X)]

where ξ is a tuning parameter that balances the two components of Lφ,α,ψ(X,Y). When ξ is set to
zero, it corresponds to the variational lower bound for a single uncaptioned image:

Uφ,α(X) = Eqφ(s,z|X)[log pα(X, s, z)− log qφ(s, z|X)] (10)

The lower bound for the entire dataset is then:

Jφ,α,ψ =
∑

(X,Y)∈Dc
Lφ,α,ψ(X,Y) +

∑
X∈Du

Uφ,α(X) (11)

where Dc denotes the set of training images with associated captions, and Du is the set of training
images that are uncaptioned (and unlabeled).

To optimize Jφ,α,ψ w.r.t. φ, ψ and α, we utilize Monte Carlo integration to approximate the
expectation, Eqφ(s,z|X), and stochastic gradient descent (SGD) for parameter optimization. We use
the variance reduction techniques in [10] and [11] to compute the gradients. Details are provided in
the SM.

When ξ is set to 1, Lφ,α,ψ(X,Y) recovers the exact variational lower bound. Motivated by assigning
the same weight to every data point, we set ξ = NX/(Tρ) or NX/(Cρ) in the experiments, where
NX is the number of pixels in each image, T is the number of words in the corresponding caption, C
is the number of categories for the corresponding label and ρ is the proportion of labeled/captioned
data in the mini-batch.

At test time, we consider two tasks: inference of a caption or label for a new image X?. Again,
considering captioning of a new image (with similar inference for labeling), after the model parameters
are learned p(Y?|X?) =

∫
pψ(Y?|s?)p(s?|X?)ds? ≈

∑Ns

s=1 pψ(Y?|s?s), where s?s ∼ qφ(s|X =
X?), and Ns is the number of samples. Monte Carlo sampling is used to approximate the integral,
and the recognition model, qφ(s|X), is employed to approximate p(s|X), for fast inference of image
representation.

5 Experiments

The architecture of models and initialization of model parameters are provided in the SM. No dataset-
specific tuning other than early stopping on validation sets was conducted. The Adam algorithm [20]
with learning rate 0.0002 is utilized for optimization of the variational learning expressions in
Section 4. We use mini-batches of size 64. Gradients are clipped if the norm of the parameter vector
exceeds 5, as suggested in [21]. All the experiments of our models are implemented in Theano [22]
using a NVIDIA GeForce GTX TITAN X GPU with 12GB memory.

5.1 Benchmark Classification

We first present image classification results on MNIST, CIFAR-10 & -100 [23], Caltech 101 [24] &
256 [25], and ImageNet 2012 datasets. For Caltech 101 and Caltech 256, we use 30 and 60 images
per class for training, respectively. The predictions are based on averaging the decision values of
Ns = 50 collected samples from the approximate posterior distribution over the latent variables from
qφ(s|X). As a reference for computational cost, our model takes about 5 days to train on ImageNet.

We compared our VAE setup to a VAE with deterministic unpooling, and we also compare with
a DGDN trained using Gibbs sampling and MCEM [8]; classification results and testing time are
summarized in Table 1. Other state-of-the-art results can be found in [8]. The results based on
Gibbs sampling and MCEM are obtained by our own implementation on the same GPU, which are
consistent with the classification accuracies reported in [8].

For Gibbs-sampling-based learning, only suitable for the first five small/modest size datasets we
consider, we collect 50 posterior samples of model parameters α, after 1000 burn-in iterations during
training. Given a sample of model parameters, the inference of top-layer features at test is also done
via Gibbs sampling. Specifically, we collect 100 samples after discarding 300 burn-in samples; fewer
samples leads to worse performance. The predictions are based on averaging the decision values
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Table 1: Classification error (%) and testing time (ms per image) on benchmarks.

Method
MNIST CIFAR-10 CIFAR-100 Caltech 101 Caltech 256

test test test test test test test test test test
error time error time error time error time error time

Gibbs [8] 0.37 3.1 8.21 10.4 34.33 10.4 12.87 50.4 29.50 52.3
MCEM [8] 0.45 0.8 9.04 1.1 35.92 1.1 13.51 8.8 30.13 8.9

VAE-d 0.42 0.007 10.74 0.02 37.96 0.02 14.79 0.3 32.18 0.3
VAE (Ours) 0.38 0.007 8.19 0.02 35.01 0.02 11.99 0.3 29.33 0.3

Method
ImageNet 2012 ImageNet Pretrained for

top-1 top-5 test Caltech 101 Caltech 256
error error time test error test time test error test time

MCEM [8] 37.9 16.1 14.4 6.85 14.1 22.10 14.2
VAE (Ours) 38.2 15.7 1.0 6.91 0.9 22.53 0.9

of the collected samples (50 samples of model parameters α, and for each 100 inference samples
of latent parameters s and z, for a total of 5000 samples). With respect to the testing of MCEM,
all data-dependent latent variables are integrated (summed) out in the expectation, except for the
top-layer feature map, for which we find a MAP point estimate via gradient descent.

As summarized in Table 1, the proposed recognition model is much faster than Gibbs sampling and
MCEM at test time (up to 400x speedup), and yields accuracy commensurate with these other two
methods (often better). To illustrate the role of stochastic unpooling, we replaced it with deterministic
unpooling as in [14]. The results, indicated as VAE-d in Table 1, demonstrate the powerful capabilities
of the stochastic unpooling operation. We also tried VAE-d on the ImageNet 2012 dataset; however,
the performance is much worse than our proposed VAE, hence those results are not reported.

5.2 Semi-Supervised Classification

We now consider semi-supervised classification. With each mini-batch, we use 32 labeled samples
and 32 unlabeled samples, i.e., ρ = 0.5.

Table 2: Semi-supervised classification error (%) on MNIST. N is the number of labeled images per class.

N TSVM Deep generative model [26] Ladder network [27] Our model
M1+TSVM M1+M2 Γ-full Γ-conv ξ = 0 ξ = Nx/(Cρ)

10 16.81 11.82± 0.25 3.33 ± 0.14 1.06 ± 0.37 0.89±0.50 5.83 ± 0.97 1.49 ± 0.36
60 6.16 5.72± 0.05 2.59 ±0.05 - 0.82 ± 0.17* 2.19 ± 0.19 0.77 ± 0.09
100 5.38 4.24± 0.07 2.40 ±0.02 0.84 ± 0.08 0.74 ± 0.10* 1.75 ± 0.14 0.63 ± 0.06
300 3.45 3.49± 0.04 2.18 ±0.04 - 0.63 ± 0.02* 1.42 ± 0.08 0.51 ± 0.04

*These results are achieved with our own implementation based on the publicly available code.

MNIST We first test our model on the MNIST classification benchmark. We randomly split the
60,000 training samples into a 50,000-sample training set and a 10,000-sample validation set (used to
evaluate early stopping). The training set is further randomly split into a labeled and unlabeled set,
and the number of labeled samples in each category varies from 10 to 300. We perform testing on the
standard 10,000 test samples with 20 different training-set splits.

Table 2 shows the classification results. For ξ = 0, the model is trained in an unsupervised manner.
When doing unsupervised learning, the features extracted by our model are sent to a separate
transductive SVM (TSVM). In this case, our results can be directly compared to the results of the
M1+TSVM model [26], demonstrating the effectiveness of our recognition model in providing good
representations of images. Using 10 labeled images per class, our semi-supervised learning approach
with ξ = Nx/(Cρ) achieves a test error of 1.49, which is competitive with state-of-the-art results [27].
When using a larger number of labeled images, our model consistently achieves the best results.

ImageNet 2012 ImageNet 2012 is used to assess the scalability of our model to large datasets
(also considered, for supervised learning, in Table 1). Since no comparative results exist for semi-
supervised learning with ImageNet, we implemented the 8-layer AlexNet [2] and the 22-layer
GoogLeNet [4] as the supervised model baselines, which were trained by utilizing only the labeled
data1. We split the 1.3M training images into a labeled and unlabeled set, and vary the proportion

1We use the default settings in the Caffe package, which provide a top-1 accuracy of 57.1% and 68.7%, as
well as a top-5 accuracy of 80.2% and 88.9% on the validation set for AlexNet and GoogLeNet, respectively.
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of labeled images from 1% to 100%. The classes are balanced to ensure that no particular class is
over-represented, i.e., the ratio of labeled and unlabeled images is the same for each class. We repeat
the training process 10 times, and each time we utilize different sets of images as the unlabeled ones.
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Figure 1: Semi-supervised classification accuracy on the
validation set of ImageNet 2012.

Figure 1 shows our results, together with
the baselines. Tabulated results and a
plot with error bars are provided in the
SM. The variance of our model’s results
(caused by different randomly selected
labeled examples) is around 1% when
considering a small proportion of labeled
images (less than 10% labels), and the
variance drops to less than 0.2% when
the proportion of labeled images is larger
than 30%. As can be seen from Figure 1,
our semi-supervised learning approach
with 60% labeled data achieves compara-
ble results (61.24% top-1 accuracy) with
the results of full datasets (61.8% top-1
accuracy), demonstrating the effective-
ness of our approach for semi-supervised
classification. Our model provides con-
sistently better results than AlexNet [2]
which has a similar five convolutional
layers architecture as ours. Our model is
outperformed by GoogLeNet when more
labeled images are provided. This is not
surprising since GoogLeNet utilizes a considerably more complicated CNN architecture than ours.

To further illustrate the role of each component of our model, we replaced the Bayesian SVM with a
softmax classifier (see discussion at the end of Section 3.1). The softmax results are slightly worse,
and provided in the SM. The gap between the results of Bayesian SVM and softmax are around 1%
when the proportion of labeled images is less 30% and drop to around 0.5% when a larger proportion
of labeled images is considered (larger than 30%). This further illustrates that the performance
gain is primarily due to the semi-supervised learning framework used in our model, rather than the
discriminative power of the SVM.

5.3 Image Captioning
We present image captioning results on three benchmark datasets: Flickr8k [29], Flickr30k [30] and
Microsoft (MS) COCO [31]. These datasets contain 8000, 31000 and 123287 images, respectively.
Each image is annotated with 5 sentences. For fair comparison, we use the same pre-defined splits
for all the datasets as in [5]. We use 1000 images for validation, 1000 for test and the rest for training
on Flickr8k and Flickr30k. For MS COCO, 5000 images are used for both validation and testing.
The widely used BLEU metric [32] and sentence perplexity (PPL) are employed to quantitatively
evaluate the performance of our image captioning model. A low PPL indicates a better language
model. For the MS COCO dataset, we further evaluate our model with metrics METEOR [33] and
CIDEr [34]. Our joint model takes three days to train on MS COCO.

We show results for three models: (i) Two-step model: this model consists of our generative and
recognition model developed in Section 2 to analyze images alone, in an unsupervised manner. The
extracted image features are fed to a separately trained RNN. (ii) Joint model: this is the joint model
developed in Sections 2 and 3.2. (iii) Joint model with ImageNet: in this model training is performed
in a semi-supervised manner, with the training set of ImageNet 2012 treated as uncaptioned images,
to complement the captioned training set.

The image captioning results are summarized in Table 3. Our two-step model achieves better
performance than similar baseline two-step methods, in which VggNet [3] and GoogLeNet [4] were
used as feature extractors. The baseline VggNet and GoogLeNet models require labeled images for
training, and hence are trained on ImageNet. By contrast, in our two-step approach, the deep model
is trained in an unsupervised manner, using uncaptioned versions of images from the training set.
This fact may explain the improved quality of our results in Table 3.
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Table 3: BLEU-1,2,3,4, METEOR, CIDEr and PPL metrics compared to other state-of-the-art
results and baselines on Flickr8k, Flickr 30k and MS COCO datasets.

Method Flickr8k Flickr30k
B-1 B-2 B-3 B-4 PPL B-1 B-2 B-3 B-4 PPL

Baseline results
VggNet+RNN 0.56 0.37 0.24 0.16 15.71 0.57 0.38 0.25 0.17 18.83

GoogLeNet+RNN 0.56 0.38 0.24 0.16 15.71 0.58 0.39 0.26 0.17 18.77
Our two step model 0.61 0.41 0.27 0.17 15.82 0.61 0.41 0.27 0.17 18.73

Our results with other state-of-the-art results
Hard-Attention [6] 0.67 0.46 0.31 0.21 - 0.67 0.44 0.30 0.20 -

Our joint model 0.70 0.49 0.33 0.22 15.24 0.69 0.50 0.35 0.22 16.17
Our joint model with ImageNet 0.72 0.52 0.36 0.25 13.24 0.72 0.53 0.38 0.25 15.34

State-of-the-art results using extra information
Attributes-CNN+RNN [7] 0.74 0.54 0.38 0.27 12.60 0.73 0.55 0.40 0.28 15.96

Method MS COCO
B-1 B-2 B-3 B-4 METEOR CIDEr PPL

Baseline results
VggNet+RNN 0.61 0.42 0.28 0.19 0.19 0.56 13.16

GoogLeNet+RNN 0.60 0.40 0.26 0.17 0.19 0.55 14.01
Our two step 0.61 0.42 0.27 0.18 0.20 0.58 13.46

Our results with other state-of-the-art results
DMSM [28] - - - 0.26 0.24 - 18.10

Hard-Attention [6] 0.72 0.50 0.36 0.25 0.23 - -
Our joint model 0.71 0.51 0.38 0.26 0.22 0.89 11.57

Our joint model with ImageNet 0.72 0.52 0.37 0.28 0.24 0.90 11.14
State-of-the-art results using extra information

Attributes-CNN+LSTM [7] 0.74 0.56 0.42 0.31 0.26 0.94 10.49

It is worth noting that our joint model yields significant improvements over our two-step model,
nearly 10% in average for BLEU scores, demonstrating the importance of inferring a shared latent
structure. It can also be seen that our improvement with semi-supervised use of ImageNet is most
significant with the small/modest datasets (Flickr8k and Flickr30k), compared to the large dataset
(MS COCO). Our model performs better than most image captioning systems. The only method
with better performance than ours is [7], which employs an intermediate image-to-attributes layer,
that requires determining an extra attribute vocabulary. Examples of generated captions from the
validation set of ImageNet 2012, which has no ground truth captions and is unseen during training
(the semi-supervised learning only uses the training set of ImageNet 2012), are shown in Figure 2.

      
a man with a snowboard 

next to a man with glasses 

a big black dog standing on 

the grass 

a player is holding a 

hockey stick 

a desk with a keyboard 

 
a man is standing next to a 

brown horse 

a box full of apples and 

oranges 

 Figure 2: Examples of generated caption from unseen images on the validation dataset of ImageNet.

6 Conclusions

A recognition model has been developed for the Deep Generative Deconvolutional Network (DGDN)
[8], based on a novel use of a deep CNN. The recognition model has been coupled with a Bayesian
SVM and an RNN, to also model associated labels and captions, respectively. The model is learned
using a variational autoencoder setup, and allows semi-supervised learning (leveraging images without
labels or captions). The algorithm has been scaled up with a GPU-based implementation, achieving
results competitive with state-of-the-art methods on several tasks (and novel semi-supervised results).
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