多变量系统的最小二乘辨识问题的推导以及matlab仿真

本文介绍了如何利用最小二乘辨识法解决单输入单输出(SISO)和两输入两输出(MIMO)系统的问题。详细推导了模型参数,并提供了MATLAB代码实现数据生成、模型参数求解以及输出比较,以验证模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.单输入单输出情况的推导;2.两输入两输出情况的推导,并进行matlab仿真以及完成仿真报告。

多变量系统的最小二乘辨识问题是确定一个线性多输入多输出(MIMO)系统的未知参数,使得该系统能够以最佳方式近似给定输入和输出之间的关系。在本例中,我们将展示单输入单输出(SISO)情况和两输入两输出(MIMO)情况下的推导和MATLAB仿真。

  1. 单输入单输出情况的推导

在单输入单输出情况下,系统的理想模型可以表示为:

y(k) = -0.5y(k-1) + 1.2y(k-2) + 1.0y(k-3) + 0.0y(k-4) + 0.3u(k-1) + 0.6u(k-2)

其中,u(k)是单一输入信号,y(k)是相应的输出信号。

我们可以将该模型表示为以下矩阵形式:

Y = X * θ + V

其中,Y是输出向量,X是输入数据矩阵,θ是要确定的模型参数向量,V是随机噪声向量。

具体来说,对于每个时间步k:

Y(k) = [y(k)]

X(k, :) = [y(k-1), y(k-2), y(k-3), y(k-4), u(k-1), u(k-2)]

θ = [-0.5, 1.2, 1.0, 0.0, 0.3, 0.6]

V(k) = [v(k)]

根据最小二乘准则,我们需要最小化误差的平方

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值