鱼弦:CSDN内容合伙人、CSDN新星导师、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
基于PyTorch搭建的CNN(卷积神经网络)示例用于CIFAR-10数据集的分类任务。下面是详细解释其原理和主要步骤:
-
数据集:CIFAR-10是一个常用的计算机视觉数据集,包含10个不同类别的图像,每个类别有6000个32x32彩色图像。数据集被用于训练和评估CNN模型的性能。
-
卷积层:CNN首先通过卷积层提取图像的特征。卷积层使用一组可学习的滤波器(也称为卷积核)对输入图像进行滑动窗口操作,计算出特征图。这些特征图捕捉了不同位置的局部特征。
-
激活函数:在每个卷积层之后,通常会应用一个激活函数,如ReLU(修正线性单元),以引入非线性性质,增加网络的表达能力。
-
池化层:池化层用于降低特征图的空间维度,减少模型复杂性。常见的池化操作是最大池化,它从特定区域中选择最大值作为池化后的值。
-
全连接层:在卷积层和全连接层之间,通常会添加一个或多个全连接层。全连接层将前一层的特征展平为一维向量,并将其输入到具有权重的神经元集合