鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
Keras 深度学习实战(1)——神经网络基础与模型训练过程详解
1. 简介
本教程将介绍 Keras 深度学习框架中的神经网络基础知识以及模型训练过程的详细步骤。
2. 神经网络基础
2.1 神经元
神经元是神经网络的基本单元,它模拟生物神经元的结构和功能。每个神经元由以下部分组成:
- 输入端: 接收来自其他神经元的信号,称为输入。
- 权重: 用于控制每个输入信号对神经元的影响程度。
- 激活函数: 将输入信号进行非线性变换,产生神经元的输出。
- 输出端: 将神经元的输出信号传递给其他神经元。
2.2 激活函数
激活函数用于引入非线性因素,使神经网络能够学习更复杂的关系。常用的激活函数包括: