鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
Keras深度学习实战——DCGAN详解与实现
简介
深度卷积生成对抗网络 (DCGAN) 是一种基于卷积神经网络 (CNN) 的生成对抗网络 (GAN),可以用于生成高分辨率的逼真图像。DCGAN 的结构与传统的 GAN 相似,但使用了 CNN 作为生成器和判别器,能够更好地捕捉图像的细节和特征。
原理详解
DCGAN 的工作原理与传统的 GAN 相同,但使用了 CNN 作为生成器和判别器。CNN 具有强大的特征提取能力,能够更好地捕捉图像的细节和特征,因此 DCGAN 可以生成更高分辨率的逼真图像。
DCGAN 的具体工作步骤如下:
- 初始化: 初始化生成器和判别器模型。
- 训练:
- 生成器步骤: 生成器从噪声中生成一批低分辨率图像。
- 上采样: 将低分辨率图像上采样到目标分辨率。
- 判别器步骤: 判别器对真实图像和生成图像进行判断,并输出预测结果。
- 更新生成器: