YOLOv8 添加大目标检测头、小目标检测头、4头BiFPN

YOLOv8通过添加大目标检测头和小目标检测头提升检测精度,结合4头BiFPN进行特征融合,适用于多种目标检测任务,包括智能安防、自动驾驶和医疗影像分析。文章详细介绍了这些改进的原理和实现,并提供相关代码和应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

YOLOv8 添加大目标检测头、小目标检测头、4头BiFPN

介绍

YOLOv8是目前最快的目标检测算法之一,它在速度和精度上都取得了很大的突破。为了进一步提高 YOLOv8 的性能,研究人员提出了各种改进方案,其中之一是添加大目标检测头、小目标检测头和 4 头 BiFPN。

大目标检测头旨在提高对大目标的检测精度。它通常使用更大的卷积核和更多的通道来提取大目标的特征。

小目标检测头旨在提高对小目标的检测精度。它通常使用较小的卷积核和更少的通道来提取小目标的特征。

4 头 BiFPN是一种改进的特征融合网络,它可以更好地融合不同尺度的特征,从而提高检测精度。

原理详解

大目标检测头

大目标检测头通常由以下几个部分组成:

  • 卷积层: 使用较大的卷积核提取大目标的特征。
  • 池化层: 降低特征的维度。
  • 激活函数:<
### 使用注意力机制优化具有四个检测头的双向特征金字塔网络 (BiFPN) 为了提升 BiFPN 的性能并更好地适应复杂场景中的目标检测任务,可以在其基础上引入注意力机制。具体来说,可以通过以下方式来优化: #### 1. 引入通道注意力模块 在每一层特征图上应用 SE(Squeeze-and-Excitation)模块或其他类型的通道注意力机制。这有助于自动学习哪些通道更重要,并动态调整各通道权重。 ```python class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) * x ``` 此代码实现了SE模块的核心逻辑[^1]。 #### 2. 添加空间注意力机制 除了调节通道外,还可以加入空间维度的关注度分配。例如 Spatial Attention Module 可以帮助模型聚焦于图像中有意义的位置区域。 ```python class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) * x ``` 这段代码展示了如何构建一个简单有效的空间注意力模块[^2]。 #### 3. 结合多个尺度的信息交互 考虑到 BiFPN 已经具备良好的多尺度特性,进一步强化这一点非常重要。可以考虑使用可变形卷积 v2 或者其他形式的空间变换操作来增强跨尺度间的关系建模能力。 ```python import torchvision.ops as ops def deform_conv_layer(input_tensor, offset_channels=18): # Deformable Convolution Layer with offsets generated from input tensor itself. batch_size, channels, height, width = input_tensor.shape conv_offset_mask = nn.Conv2d(channels, 3*offset_channels,# For each point there are three values: dx, dy and weight mask m kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)).cuda() offset_mask = conv_offset_mask(input_tensor).view(batch_size, -1, height, width) offset_x, offset_y, mask = torch.chunk(offset_mask, chunks=3, dim=1) final_offsets = torch.cat((offset_x, offset_y), dim=1).contiguous().float() / 10.0 masked_input = input_tensor * F.interpolate(mask, scale_factor=None, mode='bilinear', align_corners=True) output = ops.deform_conv2d( input=masked_input, offset=final_offsets, weight=torch.ones_like(conv_offset_mask.weight.data), stride=[1, 1], padding=[1, 1], dilation=[1, 1]) return output ``` 上述代码片段提供了一种基于输入张量生成偏移量的方式,从而实现更灵活的空间映射关系[^3]。 通过以上三种策略相结合,能够显著改善 BiFPN 对不同类型物体尤其是小目标如安全帽等细节特征的学习效果。同时也能让整个架构更加鲁棒地应对各种复杂的视觉环境变化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值