鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8 中替换主干网络之 ConvNext:完整解析与实现
1. 简介
ConvNext(Convolutional Next)是一种基于 Transformer 的卷积神经网络架构,具有以下特点:
- 高效: ConvNext 采用 Transformer 的注意力机制,可以捕获更长距离的依赖关系,提升模型的性能。
- 轻量: ConvNext 采用 Depthwise Convolution 和 Linear Attention 等技术,可以减少模型的参数量,使其更易于部署在资源受限的设备上。
- 通用: ConvNext 可以应用于图像分类、目标检测、语义分割等多种任务。
由于 ConvNext 的上述优点,使其成为 YOLOv8 中替换主干网络的理想选择。
2. 原理详解
ConvNext 的核心思想是将 Transformer 的注意力机制引入到卷积神经网络中,以提升模型的性能。具体来说,ConvNext 主要采用了以下几个技术:
- Depthwise Convolution: Depthwise Convol