鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | 细节创新篇 | iAFF迭代注意力特征融合助力多目标细节涨点
1. 简介
iAFF迭代注意力特征融合(Iterative Attentive Feature Fusion)是一种轻量化的注意力机制,它通过迭代地融合不同尺度的特征来提升模型性能,尤其是在小目标检测方面。iAFF已被证明能够有效地改进YOLOv8目标检测模型,在mAP和recall等指标上取得了显著的提升。
2. 原理详解
iAFF主要包含以下几个部分:
- 特征提取: 首先提取不同尺度的特征图,例如P1、P2、P3等。
- 注意力模块: 采用注意力模块对每个尺度的特征图进行自注意力计算,并生成注意力权重。
- 特征融合: 将每个尺度的特征图与对应的注意力权重相乘,然后进行特征融合。
- 迭代融合: 重复步骤2和3,进行多个迭代的特征融合。