鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
1. 简介
在YOLOv8中引入轻量级跨尺度特征融合模块CCFM可以显著提高模型的性能,尤其是在目标检测的小目标检测精度和多尺度目标检测性能方面。CCFM是一种基于通道注意力和空间注意力的轻量级特征融合模块,它能够有效地融合不同尺度特征之间的信息,提升模型对目标特征的提取能力。
2. 原理详解
CCFM主要包含以下几个部分:
- 通道注意力模块: 首先使用通道注意力模块对每个尺度特征图进行加权,使得重要的特征通道得到更高的权重。
- 空间注意力模块: 然后使用空间注意力模块对每个尺度特征图进行加权,使得重要的空间位置得到更高的权重。
- 特征融合: 最后将加权后的特征图进行融合,得到最终的特征表示。
3. 应用场景解释
CCFM轻量级跨尺度特征融合模块适用于以下场景:
- 目标检测: 提高目标检测模型的精度,尤其是小目标检测的精度和多尺度目标检测性能。
- 图像分类: 提升图像分类模型的准确率,尤其是对多尺度目标的分类性能。