YOLOv8 添加EfficientViT替换Backbone

鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)

1. 简介

将EfficientViT引入YOLOv8的主干网络可以显著提高模型的性能,尤其是在目标检测的速度和精度方面。EfficientViT是一种基于Transformer的轻量级视觉变换网络,它采用了一系列创新设计,在保证模型精度的同时,大幅降低了模型的计算量和参数量。EfficientViT的引入使得YOLOv8能够在保持较高精度的同时,运行得更快,更轻量化,适用于对计算资源或部署空间受限的场景。

2. 原理详解

EfficientViT主要包含以下几个部分:

  • Transformer编码器-解码器结构: 采用Transformer的编码器-解码器结构,可以捕获更长距离的特征依赖关系。
  • MobileViT模块: 使用MobileViT模块作为Transformer的编码器和解码器,可以降低模型的计算量。
  • 深度可分离卷积: 采用深度可分离卷积代替标准卷积,可以进一步降低模型的计算量。
  • Swin Transformer注意力机制: 在Transformer的注意力机制中加入Swin Transformer的局部窗口注意力机制,可以增强模型对局部特
### YOLO Model Backbone Architecture In the evolution of YOLO models, particularly with versions like YOLOv10 and beyond, significant improvements have been made to the backbone architecture by incorporating more efficient network structures such as MobileNetV1[^1], MobileNetV2[^2], and EfficientViT[^3]. These changes aim at enhancing performance while reducing computational requirements. #### Utilizing MobileNetV1 for Lightweight Networks The transition towards lightweight networks has seen the adoption of MobileNetV1 within YOLO's backbone structure. This approach simplifies deployment on mobile devices without compromising much on accuracy or speed. However, integrating this change can be complex due to certain architectural nuances that cannot easily be represented through YAML configuration files alone. #### Advancements with MobileNetV2 Further advancements led to the incorporation of MobileNetV2 into YOLO’s backbone design. Training configurations now allow users to specify paths directly related to these new backbones via command-line instructions tailored specifically for projects utilizing MobileNetV2 as their core component: ```bash cd yolov11项目所在的路径 yolo detect train data=coco128.yaml model=ultralytics/cfg/models/11/yolo11n_MobileNetV2.yaml epochs=100 imgsz=640 batch=16 device=cpu project=yolov11 ``` #### Introduction of EfficientViT For even greater efficiency gains, Microsoft introduced EfficientViT—a highly optimized vision transformer designed explicitly for real-time applications. When applied to YOLO architectures, it not only improves upon traditional CNN-based designs but also integrates advanced features like cascaded group attention mechanisms which further boost its capabilities. ```yaml backbone: # [from, number, module, args] [ [-1, 1, EfficientViT_M0, []], [-1, 1, SPPF, [1024, 5]] ] ``` #### Code Implementation Details To implement modifications effectively across different parts of a neural network including both `backbone` and `head`, specific code adjustments are necessary. For instance, when iterating over components defined under either section (`d["backbone"] + d["head"]`), flags like `is_backbone` help distinguish between sections during runtime processing[^4]: ```python is_backbone = False for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): t = m m = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m] # get module ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼弦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值