鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
1. 简介
将EfficientViT引入YOLOv8的主干网络可以显著提高模型的性能,尤其是在目标检测的速度和精度方面。EfficientViT是一种基于Transformer的轻量级视觉变换网络,它采用了一系列创新设计,在保证模型精度的同时,大幅降低了模型的计算量和参数量。EfficientViT的引入使得YOLOv8能够在保持较高精度的同时,运行得更快,更轻量化,适用于对计算资源或部署空间受限的场景。
2. 原理详解
EfficientViT主要包含以下几个部分:
- Transformer编码器-解码器结构: 采用Transformer的编码器-解码器结构,可以捕获更长距离的特征依赖关系。
- MobileViT模块: 使用MobileViT模块作为Transformer的编码器和解码器,可以降低模型的计算量。
- 深度可分离卷积: 采用深度可分离卷积代替标准卷积,可以进一步降低模型的计算量。
- Swin Transformer注意力机制: 在Transformer的注意力机制中加入Swin Transformer的局部窗口注意力机制,可以增强模型对局部特