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ABSTRACT
In order to improve the recognition rate of the tone classification of doctors in online
medical services scenarios, we propose a model that integrates a one-dimensional
convolutional neural network (1DCNN) with a bidirectional long short-term memory
network (BiLSTM). Firstly, significant tone types within online medical services
scenarios were identified through a survey questionnaire. Secondly, 68 features in both
the time and frequency domains of doctors’ tone were extracted using Librosa, serving
as the initial input for the model. We utilize the 1DCNN branch to extract local features
in the time and frequency domains, while the BiLSTM branch captures the global
sequential features of the audio, and a feature-level fusion is performed to enhance
tone classification effectiveness. When applied in online medical services scenarios,
experimental results show that themodel achieved an average recognition rate of 84.4%
and an F1 score of 84.4%, significantly outperforming other models and effectively
improving the efficiency of doctor-patient communication. Additionally, a series of
ablation experiments were conducted to validate the effectiveness of the 1DCNN and
BiLSTM modules and the parameter settings.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and
Speech, Neural Networks
Keywords Tone, Online medical services, Classification, 1DCNN, BiLSTM

INTRODUCTION
As living standards improve, there is an increasing focus on health. This heightened
attention to health has gradually prompted a transformation in healthcare service models
(Shang & Liu, 2016). Onlinemedical services, with their unique convenience and efficiency,
have gradually become a part of people’s daily lives. Compared to traditional offline
medical care, online medical services not only offer rapid consultation responses but also
effectively reduce the patient load on hospitals. Under this emerging service model, the
tone and manner in which doctors communicate online while answering questions have
a significant impact on patients’ psychological and emotional states. Research indicates
that a positive communication tone can not only improve the patient’s experience but
may also significantly affect their treatment outcomes and satisfaction (Liu et al., 2020;
Wu & Lu, 2021). Given this context, a model is proposed for automatically classifying the
tone of doctors in online medical services. This enables doctors to effectively adjust their
online communication strategies, thereby meeting the emotional and psychological needs
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of patients and ultimately enhancing the overall quality of online medical services. The
study has been ethically approved by the Academic Committee of the School of Journalism
at Chongqing University. Informed consent form has been provided to the participants,
and written consent was obtained from them.

In recent years, traditional audio classification methods such as support vector machines
(SVM), k-nearest neighbors (KNN), decision trees (DT), random forests (RF), and logistic
regression (LR) have been widely used. Support vector machines (SVM) are an effective
supervised learning algorithm, primarily achieving data point classification by constructing
one or more hyperplanes in the feature space (Bahatti et al., 2016). The k-nearest neighbors
(KNN) algorithmclassifies based directly on the nearest samples, thereby effectively utilizing
the characteristics of audio signals (Thiruvengatanadhan, 2017). Pavan & Dhanalakshmi
(2022) effectively predicted the types of audio files using decision tree (DT) and random
forest (RF) models. Singh, Singh & Saluja (2024) implemented classification of multiple
emotions using a logistic regression (LR) model. However, these machine learning models
have certain limitations, they typically require manual feature extraction and selection,
which is not only time-consuming but may also limit classification performance due to
improper feature selection. Moreover, for nonlinear and complex emotional expressions,
these models may struggle to capture subtle patterns and temporal relationships in
audio data. The multilayer perceptron (MLP), as a type of artificial neural network, is
more effective in processing audio data compared to other machine learning models
(Karthikeyan & Mala, 2018), yet its structure is relatively simple when compared to deep
learning models.

Deep learning, with its capability to learn complex patterns, can achieve superior
performance in audio classification tasks. Convolutional neural networks (CNN) and
recurrent neural networks (RNN) represent two major distinct types of neural network
model, Hershey et al. (2017) employed various CNN architectures for sound classification,
specifically using models such as AlexNet (Krizhevsky, Sutskever & Hinton, 2017), ResNet
(He et al., 2016), to demonstrate the effectiveness of audio classification. However, the
efficiency of two-dimensional convolutional neural networks (2DCNN) in processing
audio tasks is relatively low. Abdoli, Cardinal & Koerich (2019) proposed an end-to-end
network using one-dimensional convolutional neural networks (1DCNN) for sound
classification, which significantly reduced the model’s training time. Although CNNs
models are capable of capturing spatial features in data, they exhibit some limitations
when processing time series data. Recurrent neural networks (RNN) are effective at
extracting features from sequences, and long short-term memory (LSTM) is a variant
of the RNN architecture. Kanjanawattana et al. (2022) found that LSTM performs better
than CNN in emotion classification. However, unlike CNN, LSTM does not have the
capability to process local features of data. Chen & Liu (2021) proposed a method for the
cascaded fusion of CNN and bi-directional long short-term memory (BiLSTM) for audio
classification, achieving better performance than using either CNN or LSTMmodels alone.
Nevertheless, this two-stage approach increases computational complexity. To address
the aforementioned challenges, we propose a model that performs feature-level fusion
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of 1DCNN and BiLSTM for classifying the tone of doctors on online medical platforms.
Overall, the main contributions of this article include:
1. Designed the ‘questionnaire on tone types of medical professional service providers’,

which substantiates the rationale for categorizing the tones of doctors on onlinemedical
platforms into six distinct types.

2. Created a proprietary dataset comprising platforms ‘Ding Xiang Doctor’ and ‘Chun
Yu Doctor’, and trained it on a dual-channel model constructed with CNN and
BiLSTM (1DCNN-BiLSTM), effectively recognizing six tones: normal, angry, stressed,
tenderness, determination, and steadiness.

3. Compared the performance of our model with other models based on evaluation
metrics such as accuracy, precision, recall, F1 score, and Kappa value, and utilized
ablation study to justify the appropriateness of our model’s settings and parameters.
The rest of this article is organized as follows: the ‘RelatedWork’ section introduces tone

classification and the process of speech feature extraction. The ‘Proposed Methodology’
section describes the 1DCNN-BiLSTM model that this article proposes. The ‘Experiments
and Results’ section discusses the establishment of the dataset, the settings of model
parameters, a comparison of the effects between different models, and a performance
comparison of ablation study. The ‘Conclusion’ section summarizes the practical
and theoretical significance of the proposed method, its shortcomings and areas for
improvement, and future directions for application.

Related work
Tone classification
A person’s tone often conveys their emotions and attitudes, when classifying tones, it is
essential to fully consider the characteristics of each tone. Kawade et al. (2022) roughly
categorized tones into happy, sad, angry, surprised, neutral, disgust, calm, and fear, and
conducted training on the English database of the RAVDESS dataset. Andronati et al.
(2023) also used the RAVDESS database but categorized tones into calm, happy, sad,
angry, fear, surprised, and disgust. Kanjanawattana et al. (2022) classified tones as normal,
angry, surprised, happy, and sad. the aforementioned studies share a similar issue: they
merely categorize tones simplistically without thoroughly considering the appropriateness
of these classifications. Given that in online medical contexts, the various tones used by
doctors can significantly impact the patient, potentially affecting their health conditions
severely, it is essential to classify tones accurately.

For this study, we created the ‘‘Survey on Tone Types in SpecializedMedical Services’’ to
identify the tones in professional service providers that consumers consider to be significant
and important. The questionnaire design is detailed in Article S1. The importance of tone
types was determined based on the impact of emotions and characteristic signals released
by doctors’ tones, as perceived by respondents in their medical practice experiences, on
their satisfaction levels.

We recruited 261 respondents to fill out the questionnaire. After excluding 79
questionnaires with a short response time (less than 60 s), 182 valid questionnaires
remained, resulting in a validity rate of 69.73%. The study has been ethically approved by
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Figure 1 Prominence and importance of tone in specialized medical service providers.
Full-size DOI: 10.7717/peerjcs.2325/fig-1

the Academic Committee of the School of Journalism at Chongqing University. Informed
consent form has been provided to the participants, and written consent was obtained
from them. As shown in Fig. 1, the tones of ‘‘determination’’, ‘‘steadiness’’, ‘‘stress’’,
‘‘tenderness’’, and ‘‘angry’’ are of certain importance and prominence in the context of
online medical services. Notably, from the perspectives of significance and prominence,
the tones of ‘‘satisfied’’ and ‘‘interested’’ are relatively low in both online medical services.
Therefore, we will notmeasure and discuss the ‘‘satisfaction’’ and ‘‘interest’’ tone categories.

In order to refine the categorization of tone types, we based our analysis on the
consistency calculated from the ratings of eight annotators on 60 audio samples, providing
evidence for the reliability and validity of the voice measurements. The results, as shown in
Table 1, indicate that the intraclass correlation coefficients (ICC) for sympathy, genuine,
dominant, and focus are lower. Therefore, these tones will not be discussed further in this
article (Goldman, 2017; Wang et al., 2021). Overall, this article identifies six categories of
tone: determination, steadiness, stress, tenderness, angry, and normal.

Feature extraction
In traditional speech and audio classification, audio signal processing is always based
on the Mel-frequency cepstral coefficients (MFCC) (Iskhakova, Wolf & Meshcheryakov,
2020). The steps are shown in Fig. 2, which mainly include audio framing and windowing,
computing the amplitude spectrum using Fourier transform, taking the logarithm of
the amplitude spectrum, converting to Mel-scale frequency, and performing the discrete
cosine transform. Al-Hattab, Zaki & Shafie (2021) utilized MFCC for environmental
sound classification, while Neili & Sundaraj (2024) extracted MFCC features for signal
classification. However, using solely MFCC features has some limitations, specifically in
capturing dynamic characteristics. When analyzing the initial audio signals, there may be
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Table 1 Intraclass correlation coefficient of each tone (ICC).

Tone type ICC1 ICC1k

Steadiness 0.5151*** 0.8947***

Determination 0.5091*** 0.8924***

Stress 0.5206*** 0.8968***

Tenderness 0.5232*** 0.8977***

Angry 0.5124*** 0.8937***

Dominant 0.2417*** 0.7183***

Sympathy 0.1739*** 0.6274***

Focus 0.0589** 0.3335**

Genuine 0.0382* 0.2409*

Notes.
***p< 0.01
**p< 0.05
*p< 0.1

Figure 2 Mel-frequency cepstral coefficients (MFCCs) extraction process.
Full-size DOI: 10.7717/peerjcs.2325/fig-2

a loss of crucial emotional information. Li, Shi & Wang (2019) demonstrated the impact
of other time-domain and frequency-domain features on audio, Lesnichaia et al. (2022)
utilized features such as zero crossing rate, spectral centroid, spectral rolloff, and chroma
vectors as inputs for speech classification.

Based on this, this article not only considers MFCC features but also incorporates
34 additional characteristics, including zero crossing rate, short-term energy, entropy of
energy, spectral centroid, spectral spread, spectral entropy, spectral flux, spectral rolloff, and
chroma vectors. Furthermore, the increments of these 34 features are calculated. For every
15-second segment of speech, 599 frames are obtained, and 68 feature values per frame
are computed using Librosa (third-party Python library). To reduce the dimensionality of
the input data, the feature data of 599 frames are averaged across every three consecutive
frames, converting each audio into a 200x68 vector representation. The features are listed in
Table 2, and their specific descriptions and calculationmethods can be found in Article S4.
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Table 2 Audio features.

Feature dim description

Zero crossing rate 1 The number of times the signal crosses zero
Short-term energy 1 The strength of signal energy
Entropy of energy 1 Measurement of sudden changes
Spectral centroid 1 The ‘‘center of gravity’’ of the spectrum
Spectral spread 1 The distribution of audio signals around the center of the

spectrum
Spectral entropy 1 Characterizing the Regularity of Speech Signal Power

Spectrum
Spectral flux 1 Capturing spectral flux to measure spectral changes

between two consecutive frames
Spectral rolloff 1 A frequency that is lower than a specified percentage of the

total spectrum energy
Mfccs 13 Mel-frequency cepstral coefficients
Chroma vector 12 Spectral energy of 12 sound poles
Chroma std 1 The standard deviation of chroma vector
Delta Zero Crossing Rate 1 Increment of Zero Crossing Rate
Delta Short-term energy 1 Increment of Short-term energy
Delta Entropy of Energy 1 Increment of Entropy of Energy
Delta Spectral Centroid 1 Increment of Spectral Centroid
Delta Spectral Spread 1 Increment of Spectral Spread
Delta Spectral Entropy 1 Increment of Spectral Entropy
Delta Spectral Flux 1 Increment of Spectral Flux
Delta Spectral Rolloff 1 Increment of Spectral Rolloff
Delta Mfccs 13 Increment of Mfccs
Delta Chroma Vector 12 Increment of Chroma Vector
Delta chroma std 1 Increment of standard deviation of chroma vector

PROPOSED METHODOLOGY
We propose a 1DCNN-BiLSTM model that includes one convolutional layer and one
BiLSTM layer. Local features are extracted by the CNN, while global features are extracted
by the BiLSTM. A specific description of the model is provided below.

Convolutional Neural Network
2DCNN and 3DCNN are used for complex tasks such as image processing and video
understanding. The data in this article consist of one-dimensional time-series signals.
Considering that 1DCNN networks can effectively process audio signals (Chowdhury &
Ross, 2020), we employ a 1DCNN to extract local features from the audio. The theoretical
framework of the 1DCNN is illustrated in Fig. 3.

The initial audio features are represented as an M*N matrix, where M denotes the
dimensions and N represents the number of columns. We extract local audio features, and
the convolution calculation formula is shown as Eq. (1):

C = f (w ∗x+b). (1)
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Figure 3 1DCNNmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.2325/fig-3

where w is the convolution kernel, x is the initial input matrix, b is the bias term, f is the
activation function, and C represents a feature map after convolution. The formula for
multiple feature maps is shown in Eq. (2):

Ch=
{
C1,C2, ··· ,Cm+2p−k

s +1

}
. (2)

Ch represents a series of feature maps output by the convolutional layer,m is the matrix
size, P is the padding extension, k is the size of the convolution kernel, and s is the stride.

A max pooling layer is used to retain the strongest features and discard weaker ones.
The formula is shown in Eq. (3):

C =max
{
C1,C2, ··· ,Cm+2p−k

s +1

}
=max{K }. (3)

After passing through a fully connected layer, the K vectors are concatenated into Q
vectors, which serve as the input for the feature fusion layer, as shown in Eq. (4):

Q=max {K1,K2,...,Kn}. (4)

Equations (1) to (4) represent an example of a convolutional neural network.

BiLSTM network
LSTM is a variant of RNN, designed to address the issues of vanishing and exploding
gradients that occur during the training of long sequences (Hochreiter & Schmidhuber,
1997). As shown in Fig. 4, the structure of an LSTM includes an input gate, a forget gate,
and an output gate.

At time t , the input to the LSTM is xt , and the output is ht . The computation of the
forget gate ft at time t is as Eq. (5):

ft = σ
(
wf ·

[
ht−1,xt

]
+bf

)
. (5)

The input gate it , determined by the previous input data and the current input, is
calculated as Eq. (6):

it = σ
(
wi ·

[
ht−1,xt

]
+bi

)
. (6)
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Figure 4 LSTMmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.2325/fig-4

At time t , the method for calculating the candidate values for the memory gate is as
shown in Eq. (7):

ĉt = tanh
(
wc ·

[
ht−1,xt

]
+bc

)
. (7)

The information of the memory cell ct at time t is determined based on ĉt and the
memory cell information from the previous moment. The computation is as shown in Eq.
(8):

ct = ft ⊗ ct−1+ it ⊗ ĉt . (8)

The computation of the output gate ot is as shown in Eq. (9):

ot = σ
(
wo ·

[
ht−1,xt

]
+bo

)
. (9)

The output value ht at time t is calculated as shown in Eq. (10):

ht = ot ⊗ tanh(ct ). (10)

In the equations above, w represents the weights, b represents the bias, σ is the sigmoid
function, and ⊗ signifies the dot product of vectors.

LSTM can only learn information at the current moment, whereas audio information
is typically interconnected. Therefore, BiLSTM is used to simultaneously learn contextual
information and capture global features (Ibrahim, Badran & Hussien, 2022). Its structure,
as illustrated in Fig. 5, includes an additional backward layer on top of the forward layer
of the LSTM model, enabling comprehensive consideration of contextual information by
concatenating the forward and backward hidden layer vectors.

PROPOSED MODEL
Combining the advantages of 1DCNN and BiLSTM mentioned above, we integrate both
networks for feature-level fusion to construct the 1DCNN-BiLSTM model. The audio
signals are input into the model, and the final classification results are output by the fully
connected layer. Specific model framework and parameters can be found in Figs. 6 and 7.

From Figs. 6 and 7, it is evident that in the 1DCNN branch, the input layer accepts
dimensions of (None, 200, 68), where None represents the batch size, 200 represents the
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Figure 5 BiLSTMmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.2325/fig-5

Figure 6 Proposed model for tone recognition.
Full-size DOI: 10.7717/peerjcs.2325/fig-6
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Figure 7 1DCNN-BiLSTMmodel structure diagram.
Full-size DOI: 10.7717/peerjcs.2325/fig-7

length of the time series, and 68 represents the number of audio features. This is followed by
a convolution layer, which outputs dimensions of (None, 200, 154). The data then enters a
max pooling layer, reducing dimensions to (None, 100, 154). A global average pooling layer
averages each feature map, resulting in dimensions of (None, 154). In the BiLSTM branch,
the output layer changes the dimensions to (None, 154), which are then concatenated with
the 1DCNN branch, resulting in dimensions of (None, 308). This is further processed by a
dense layer, adjusting dimensions to (None, 200), and finally, through another dense layer,
the output dimensions are set to (None, 6), corresponding to six categories of tones.

EXPERIMENTS AND RESULTS
Dataset
Public datasets for online medical scenarios are rare and typically lack emotional
labels. Therefore, the dataset used in this article is custom-built. ‘‘Dingxiang Doctor’’
(https://dxy.com) and ‘‘Chunyu Doctor’’ (https://www.chunyuyisheng.com) are two major
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Table 3 Experimental data set.

Tone Sample size Classification standard

Determination 261 Sounds persistent and serious
Steadiness 260 Sounds calm, cautious or self-controlled;
Stress 249 Sounds anxious and nervous
Angry 260 Sounds angry and annoyed
Tenderness 253 Sounds gentle
Normal 313 Sounds ordinary

online medical platforms. From their databases, we randomly selected all recording logs of
1,000 doctors. From each doctor’s set of recording logs, we randomly chose three question
IDs and selected voice recordings longer than 15 s from each question, ultimately obtaining
3,000 raw audio samples. We then applied a low-pass filter at 450 Hz and 60dB per octave
to fuzzify the original audio signals. The 3,000 audio samples were randomly divided into
two parts, one part included 60 audio samples for the ‘Tone Classification’ section, and
the other part consisting of 2,940 samples underwent manual listening and judgment.
From this, we selected 300 distinct recordings each of determination, steadiness, stress,
tenderness, angry, and normal (without any specific) tones, totaling 1,800 samples.

Then we divided the 1800 voice recordings into 60 tasks, which were annotated by
labelers based on the audio labeling task (see Article S2). Following the verification of
the validity of the annotations, we obtained 1596 effective standard voice samples as the
dataset. As shown in Table 3, this dataset includes 261 ‘‘determination’’ tone audios,
250 ‘‘steadiness’’ tone audios, 249 ‘‘stress’’ tone audios, 260 ‘‘angry’’ tone audios, 253
‘‘tenderness’’ tone audios, and 323 ‘‘normal’’ tone audios. Here, ‘‘normal’’ tone recordings
are those that did not exceed a score of 3 (average) in any of the aforementioned five tonal
categories. The specific processing procedure is depicted in Fig. 8.

Parameter settings
As shown in Table 4, we set the number of convolution kernels in the convolutional layer
of the 1DCNN branch in our model to 5, the number of feature channels to 154, the stride
to 1, and the activation function to ReLU, with all dropout rates set at 0.2. In the BiLSTM
branch, the number of hidden neurons is set to 77. The dataset is randomly divided into
a training set and a test set in an 8:2 ratio, with a batch size of 64. The loss function is
cross-entropy loss, the optimizer is Adam (Kingma & Ba, 2014), and the initial learning rate
is set at 0.01, dynamically adjusted at a ratio of 1/10 based on learning progress. To prevent
overfitting, early stopping is implemented when the validation loss remains unchanged for
15 epochs. Our model was implemented using the Tensorflow and Keras frameworks in a
Python3 environment.

Performance evaluation
This article is a multiclass classification task. We treat multiclass classification as multiple
binary classification tasks, with each task yielding metrics such as accuracy, recall, and F1
score. The formulas for these metrics are presented in Eqs.(11) to (14):

Huang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2325 11/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2325#supp-2
http://dx.doi.org/10.7717/peerj-cs.2325


Figure 8 Dataset production flowchart.
Full-size DOI: 10.7717/peerjcs.2325/fig-8
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Table 4 Hyperparameter settings.

Hyperparameter Value

Filter size for 1DCNN 154
Kernel size for 1DCNN 5
Padding Same
Unit number for BiLSTM 77
Dense layer neurons 200
Optimizer Adam
Batch size 64
Epoch number 200
Activation ReLU

Acc=
TP+TN

TP+TN +FP+FN
(11)

Precision=
TP

TP+FP
(12)

Recall=
TP

TP+FN
(13)

F1=
2∗Precision∗Recall
Precision+Recall

(14)

where TP, FP, TN, and FN refer to the number of true positive, false positive, true negative,
and false negative predictions, respectively.

Macro averaging is calculated as the arithmetic mean for each category. We apply macro
averaging to the aforementioned metrics to assess and compare with other models. Besides
these metrics, the Kappa coefficient is also commonly used to evaluate the accuracy of
multiclass models (Cohen, 1960), with the specific calculation formulas provided in Eqs.
(15) and (16):

kappa=
p0−pe
1−pe

(15)

pe =

∑k
j=1aj ∗bj
n∗n

. (16)

Where n represents the total number of samples, p0 represents the number of samples
the raters agree on and is divided by the total number of samples, aj denotes the number of
actual samples in class j, and bj represents the number of samples predicted to be in class j.
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Table 5 Performance comparison of different models on the test set.

Methods Type ACC Precision Recall F1 Kappa

SVM ML 0.516 0.513 0.538 0.518 0.421
KNN ML 0.431 0.455 0.439 0.440 0.317
DT ML 0.363 0.364 0.368 0.364 0.234
RF ML 0.488 0.496 0.496 0.493 0.383
LR ML 0.547 0.548 0.564 0.545 0.458
MLP ANN 0.688 0.691 0.684 0.685 0.623
AlexNet CNN 0.428 0.482 0.429 0.437 0.307
ResNet CNN 0.353 0.377 0.368 0.347 0.225
LSTM RNN 0.506 0.503 0.518 0.497 0.409
CNN+LSTM Hybird 0.534 0.577 0.527 0.528 0.435
CNN+SVM Hybird 0.603 0.602 0.607 0.603 0.523
CNN+LR Hybird 0.588 0.590 0.594 0.591 0.504
LSTM+SVM Hybird 0.550 0.550 0.557 0.545 0.461
LSTM+RF Hybird 0.547 0.547 0.551 0.547 0.455
1DCNN-BiLSTM Hybird 0.844 0.847 0.843 0.844 0.812

RESULTS
Classification performance
As shown in Table 5, the model proposed in this article demonstrated the highest accuracy
(the average recognition rate for six tones), precision, recall, F1 score, and Kappa coefficient
on the test set, achieving 84.4%, 84.7%, 84.3%, 84.4%, and 81.2%, respectively, and
significantly exceeds the performance of other models. It is notable that the accuracies of
five other machine learning models on the test set were relatively low, at 51.6%, 43.1%,
36.3%, 48.8%, and 54.7%, respectively. The MLP of the artificial neural networks recorded
an accuracy of 68.8%,which is 15.6% lower than our model,and an F1 score of 68.5%,
which is 15.9% lower than our model. The deep learning models AlexNet and ResNet had
accuracies of 42.8% and 35.3%, respectively, with other performance indicators also being
low, indicating that complex CNN models do not effectively extract the global sequential
features of audio for tone classification. The LSTM model had an accuracy of only 50.6%,
suggesting it struggles to efficiently extract local audio features. Moreover, several hybrid
models also showed significant performance gaps compared to the model developed in this
article, with CNN+LSTM, CNN+SVM, and CNN+KNN achieving accuracies of 51.6%,
60.3%, and 58.8% respectively, while LSTM+SVM and LSTM+KNN scored 54.1% and
51.6%.

As shown in Fig. 9, the model presented in this article demonstrates relatively high
recognition rates across various tones, with an 88.4% recognition rate for the ’normal’
tone. In contrast, the recognition rates for five other machine learning models are notably
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Figure 9 Comparison of tone recognition rates on the test set between different machine learning
models and the 1DCNN-BiLSTM.

Full-size DOI: 10.7717/peerjcs.2325/fig-9

lower, with the LR model achieving a 65.5% recognition rate for ‘angry’ and the lowest
being the SVM model’s recognition of ‘normal’ at merely 26.1%.

Figure 10 shows that the MLP recognizes different tones with rates ranging from 57%
to 79%. However, the CNN models, AlexNet and ResNet, display poor recognition across
all tones, particularly with ResNet’s recognition ability for the ‘normal’ tone at only 5.8%.

Figure 11 reveals that various hybrid models perform moderately in tone recognition.
In summary, the 1DCNN-BiLSTM combination model developed in this article exhibits
the best performance in tone classification tasks, demonstrating high applicability.

Confusion matrix
The confusion matrix provides a clear visualization of the recognition rates for various
tones, where each row represents the actual tone label and each column represents the
predicted tone label. Diagonal elements indicate correct classifications, while off-diagonal
elements represent misclassifications. According to Figs. 12, 13 and 14, the recognition
rates for different tones by the model presented in this article range between 78% and
89%, demonstrating high consistency between predicted and actual labels. Other models
show limited capabilities in recognizing various tones. The MLP model exhibits a higher
recognition rate for ‘normal’, but a lower rate for ‘determination’. AlexNet shows lower
accuracy for ‘determination’ and ‘stress’, but performs slightly better for ‘steadiness’ and
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Figure 10 Comparison of tone recognition rates on the test set between different neural network mod-
els and the 1DCNN-BiLSTM.

Full-size DOI: 10.7717/peerjcs.2325/fig-10

‘angry’. ResNet achieves recognition rates above 50% only for ‘tenderness’ and ‘angry’,
with overall low performance. The classification effectiveness of LSTM is uneven, with the
highest rate for ‘angry’ at 77.6% and the lowest for ‘normal’ at only 26.1%, indicating that
LSTM frequently misclassifies ‘normal’ as other tones. For hybrid models, the recognition
rates for most tones are concentrated between 50% and 70%, the recognition results are
not significant. Overall, the model proposed in this article exhibits the highest recognition
rates for various tones.

Ablation study
To validate the effectiveness of the architecture proposed in this article, two types of
cascaded fusion approaches are compared with our model. Figure 15 displays the three
methods of CNN and BiLSTM integration.

As shown in Table 6, it is evident that Model-I and Model-II require more parameter
computations compared to our model, yet their accuracies are only 50.3% and 50.9%,
respectively. The feature-level fusion approach proposed in this article not only reduces the
number of parameter computations but also achieves a higher accuracy of 84.4% compared
to the other two cascaded fusion methods.

Subsequently, we demonstrated the effectiveness of the modules by using 1DCNN
and BiLSTM as two basic modules, respectively named Base1 and Base2. We constructed
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Figure 11 Comparison of tone recognition rates on the test set between different hybird models and
the 1DCNN-BiLSTM.

Full-size DOI: 10.7717/peerjcs.2325/fig-11

Table 6 Ablation study on the impact of the different model architectures.

Methods Params (M) ACC F1

Model I 0.87 0.593 0.549
Model II 0.96 0.588 0.578
Model III (ours) 0.78 0.844 0.844

different model combinations, and the results are shown in Table 7. It can be seen that
using only Base1 or Base2 models yields poor results on our custom dataset, indicating
that standalone 1DCNN and BiLSTMmodules are not effective in extracting features from
audio data by themselves. However, when these modules are fused together, both local
features and global sequential features are extracted, resulting in a significant improvement
in classification performance.

We also verified the impact of different dropout rates on the model’s performance.
Specifically, we set the dropout rates to 0.1 and 0.2, with the specific results shown in
Table 8. It can be observed that when the dropout rate is set to 0.2, the model achieves
better performance. In contrast, setting the dropout rate to 0.1 results in decreased
generalization capability, leading to poorer metrics across all categories on the test set.
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Figure 12 Confusionmatrix visualization of different machine learning models on the test set.
Full-size DOI: 10.7717/peerjcs.2325/fig-12

Furthermore, we set the number of network layers in the BiLSTMmodule to 1 and 2, with
the results shown in Table 9. When the number of layers in the BiLSTM module increased
from 1 to 2, the dual-layer BiLSTM led to excessive transmission and overprocessing of
information. This caused the model to lose critical audio features or sequence information
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Figure 13 Confusionmatrix visualization of different neural network models on the test set.
Full-size DOI: 10.7717/peerjcs.2325/fig-13

Table 7 Ablation study on the impact of the different module combinations.

Tone Type Tone recognition rate

Train Test

Base1 Base2 Base1+Base2
(ours)

Base1 Base2 Base1+Base2
(ours)

Normal 0.539 0.460 0.886 0.565 0.420 0.884
Determination 0.599 0.604 0.816 0.556 0.611 0.778
Steadiness 0.551 0.434 0.853 0.511 0.378 0.867
Tenderness 0.592 0.573 0.811 0.617 0.596 0.872
Stress 0.371 0.525 0.832 0.319 0.489 0.830
Angry 0.436 0.505 0.866 0.293 0.448 0.828
Average 0.516 0.515 0.846 0.478 0.488 0.844

during the learning process, thereby negatively impacting the accuracy of the classification
task.
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Figure 14 Confusionmatrix visualization of different hybird models on the test set.
Full-size DOI: 10.7717/peerjcs.2325/fig-14

Finally, we also set the batch size to 64, 128, and 256, with the specific results shown in
Table 10. As the batch size increased from 64 to 128, and then from 128 to 256, the increase
in batch size did not enhance the model’s performance. Instead, it prevented the model
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Figure 15 Different model architectures.Model I and Model II are two different cascaded fusion net-
works, Model III is the feature-level fusion network proposed in this article.

Full-size DOI: 10.7717/peerjcs.2325/fig-15

Table 8 Ablation study on the impact of the dropout rate.

Dropout rate ACC Precision Recall F1 Kappa

0.1 0.372 0.348 0.359 0.315 0.231
0.2 (ours) 0.844 0.847 0.843 0.844 0.812

Table 9 Ablation study on the impact of the BiLSTM layer.

BiLSTM layer ACC Precision Recall F1 Kappa

1 (ours) 0.844 0.847 0.843 0.844 0.812
2 0.406 0.472 0.392 0.363 0.275

from effectively learning individual sample characteristics, leading to a significant decline
in accuracy and other performance metrics.

CONCLUSION
Webased on deep learning theory and building upon the characteristics of one-dimensional
convolutional neural networks and long short-term memory networks, successfully
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Table 10 Ablation study on the impact of the batch size.

Batch size ACC Precision Recall F1 Kappa

64 (ours) 0.844 0.847 0.843 0.844 0.812
128 0.538 0.547 0.544 0.538 0.444
256 0.416 0.538 0.415 0.414 0.293

constructs an online medical services tone classification model using 1DCNN-BiLSTM.
The specific categories of tone were determined through surveys, and the model classifies
six key tones of interest on a custom dataset. Compared to other machine learning, deep
learning, and hybrid models, our model achieved the best performance, with an average
accuracy of 84.4%. An ablation study demonstrates the advantages of feature-level fusion
of 1DCNN with BiLSTM over traditional cascaded fusion, as well as the rationality of
the parameter settings. Although the proposed 1DCNN-BiLSTM model has shown good
results in tone classification within an online medical context, this study acknowledges
certain limitations in the findings.

Firstly, our parameter tuning focused only on the settings of dropout rate, batch size,
and the number of network layers, without addressing other hyperparameters such as the
optimizer, activation function, and loss function. In the next steps, we will explore these
additional hyperparameters to further optimize the model.

Secondly, the proposed method was only trained and tested in the context of medical
service scenarios. It has not been applied to other contexts such as shopping or education,
so future research will investigate the effectiveness of the 1DCNN-BiLSTM model in these
additional scenarios.

Lastly, the model has not been validated and tested on large-scale public datasets;
therefore, we plan to further validate the model’s effectiveness using public datasets in
subsequent steps.
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