OpenCV findContours()函数

本文详细介绍了如何使用OpenCV库中的findContours函数进行轮廓检测,包括图像预处理、参数设置及轮廓绘制等步骤,适用于图像处理和计算机视觉领域的初学者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

def findContours(image, mode, method, contours=None, hierarchy=None, offset=None)
# findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours(等高线), hierarchy(层次结构)

使用函数的时候需要注意的点:

  1. cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图
  2. 查找轮廓的函数会修改原始图像。如果你在找到轮廓之后还想使用原始图像的话,你应该将原始图像存储到其他变量中img.copy()
  3. 在OpenCV 中,查找轮廓就是在黑色背景中找白色物体。你应该记住,要找的物体应该是白色背景应该是黑色

实现效果展示:
在这里插入图片描述
实现代码及解析:

# -*- coding: utf-8 -*-

import numpy as np
import cv2

im = cv2.imread('shape1.png') # 读取图片

# 按照findContours原理将图片进行转换
imgray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)  # 转换成灰度图片
ret, thresh = cv2.threshold(src=imgray, thresh=127, maxval=255, type=cv2.THRESH_BINARY)  # 将灰度图片转换为二值图

# 计算图片的轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) 
img = cv2.drawContours(im, contours, -1, (0,0,255), 3) # 画出图片的轮廓(-1,代表所有轮廓。其他数字代表第几个轮廓)
cv2.imshow("contour.jpg", img) # 显示图片
cv2.waitKey(0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鹏AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值