深度学习 余弦相似度

余弦相似度用于衡量向量间的相似性,值越接近1表示越相似。在深度学习中,如人脸识别,可通过计算两个向量的夹角来判断相似度。二维空间内的余弦相似度可以通过余弦定理推导,对于n维向量同样适用。以句子为例,通过分词、计算词频得到词频向量,再计算余弦值判断句子相似度。在PyTorch中,可以使用内置函数计算余弦相似度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

余弦距离,也称为余弦相似度,是用向量空间中两个向量之间的夹角余弦值作为衡量两个个体之间的差异大小的度量。

余弦值越接近于1, 夹角之间的度数越接近0度,也就是两个向量越相似,这就叫做“余弦相似度”。


举例说明:
在这里插入图片描述
通过上图,我们能看出,将两张人脸图片通过卷积神经网路,可以分别得到向量a和向量b

在空间中,向量a和向量b有以下几种情况:
第一种情况:
在这里插入图片描述
向量a和向量b的夹角很小,说明向量a和向量b有很高的相似性。

第二种情况:
在这里插入图片描述
向量a和向量b是相等的,可以表示向量a所表示的人脸图片和向量b所表示的图片是完全相似的,或者说是相同的。

第三种情况:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鹏AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值