
Failing Faster: Overlapping Patterns
for Property-Based Testing

Jonathan Fowler and Graham Hutton

School of Computer Science
University of Nottingham, UK

Abstract. In property-based testing, a key problem is generating in-
put data that satisfies the precondition of a property. One approach is to
attempt to do so automatically, from the definition of the precondition it-
self. This idea has been realised using the technique of needed narrowing,
as in the Lazy SmallCheck system, however in practice this method often
leads to excessive backtracking resulting in poor efficiency. To reduce the
amount of backtracking, we develop an extension to needed narrowing
that allows preconditions to fail faster based on the use of overlapping
patterns. We formalise our extension, show how it can be implemented,
and demonstrate that it improves efficiency in many cases.

1 Introduction

Property-based testing, popularised by systems such as QuickCheck [4], is an
automated approach to testing in which a program is validated against a specifi-
cation. In most tools, the specification consists of properties written as programs
outputting Boolean values. Input data is generated randomly or systematically,
and the program is executed in an attempt to find a counterexample. In order
to generate the input data, it is often required to write a custom generator. For
example, consider the following simple property of a sorting function:

propSort n l = perm n l =⇒ sort l ≡ [0 . . (n − 1)]

This property has two arguments, given by a number n and a list of numbers l .
The property itself states that if the list l is a permutation of the numbers from
0 to n−1, then sorting this list will give the expected result. However, while the
above definition captures a valid property, it suffers from a practical problem.
In particular, if we use a standard generator for a list of numbers, then the
precondition perm n l will rarely be met, making it difficult to generate enough
test cases to adequately test the sort function.

To overcome this problem, a custom generator is often used. For example,
the QuickCheck system [4] provides a range of type-classes and combinators for
building custom generators, using which we can define a generator for properties
such as propSort . Nevertheless, writing custom generators is time consuming and
for more complex examples, such as generating well-typed terms, is the subject of
ongoing research [12, 17]. Furthermore, it is difficult to combine such generators,
in the sense that two generators that are efficient in isolation may no longer be
efficient when they are combined together in some way.

Another approach is to attempt to derive an efficient generator from the def-
inition of the precondition, in our example the property perm. One realisation
of this approach is to use the technique of needed narrowing [1, 10] from func-
tional logic programming. For example, Lazy Smallcheck [19] adopts a narrowing
strategy and EasyCheck [2] directly uses the needed narrowing language Curry.
Using this approach, a program is evaluated in a speculative manner. Beginning
with a free input variable, the variable is refined by choosing a constructor when
the value is required to proceed with evaluation. If evaluation ends negatively
then the process backtracks, while if it ends positively then we have generated a
value satisfying the condition. However, a naturally written property often does
not make an efficient generator. In particular, the generator may be forced to
backtrack excessively if it finds itself in a branch of the program for which the
constraints are never satisfied, as we shall see in the next section.

In this paper, we explore a new technique to help reduce the amount of
backtracking that is required in a needed-narrowing approach to property-based
testing. The technique, which is a generalisation of the parallel conjunction ap-
proach used in several tools [13, 19, 3], allows evaluation of multiple branches
of the program simultaneously, potentially allowing a result to be derived at
an earlier stage of refinement. Particularly for commonly-used operators such
as conjunction, disjunction and addition, both arguments can be evaluated in
tandem. To achieve this, we use a form of overlapping pattern matching. The
pattern matching is resolved in an order-independent fashion and overlapping
patterns are allowed. More precisely, in this paper we:

– Motivate and introduce the use of overlapping patterns for needed narrowing
property-based testing using our permutation example (section 2).

– Define our source language and formalise the notion of overlapping patterns
within this language using a needed narrowing semantics (section 3).

– Give an overview of our prototype implementation (section 4), and explore
the benefits of overlapping patterns in two case studies (section 5).

– Compare with related work (section 6) and conclude (section 7).

The paper is aimed at a general functional programming audience with some
experience of property-based testing systems such as QuickCheck, but no spe-
cialist knowledge of needed narrowing is assumed. For the purposes of examples,
we use a Haskell-like syntax and semantics. Although we only apply our tech-
nique to property-based testing, we believe it could also be used to improve the
efficiency of other tools and languages based on needed narrowing.

2 Motivation and Basic Idea

To motivate the need for overlapping pattern matching we take a deeper look at
the example from the introduction. We show that naively evaluating the perm
precondition with a needed narrowing strategy results in excessive backtracking,
and how the use of an overlapping conjunction operator mitigates the problem.
We begin by defining the perm condition as follows:

perm :: Nat → [Nat]→ Bool
perm n l = length l ≡ n ∧ all (<n) l ∧ allDiff l

That is, a list l is a permutation of the natural numbers below a given limit n
if three conditions are satisfied: the list has the correct length, all the numbers
in the list are below the limit, and all the numbers in the list are different. Pre-
conditions defined as a conjunction of constraints in this manner are a common
pattern in properties. Because needed narrowing is more effective on algebraic
data types than on primitive data types [16], we assume an inductive type Nat
of natural numbers built up from basic constructors Zero and Suc.

By running a needed narrowing evaluation on the above definition for perm,
we can generate values satisfying the constraints. Needed narrowing is based
upon the idea of extending normal evaluation to include free variables, with the
values of such variables being refined as evaluation proceeds. We give a brief
overview to the technique below; for a more in-depth introduction, see [9, 15].

At the start of evaluation, a free variable is chosen for each argument of the
program and the program is reduced until the value of a variable is required
to continue. The program is then suspended on the variable. To allow further
progress, a constructor is chosen for the suspended variable and the program is
then reduced further in the same way. If evaluation fails to succeed we backtrack,
choosing alternative constructors for each variable.

For example, if we consider the first constraint length l ≡ n in perm for the
case when n = 4, needed narrowing will yield the following solution:

l = [x0, x1, x2, x3]

Along the way we would discard lists such as [x0, x1, x2] which fail to satisfy the
constraint. The variables x0–x3 are free in the solution, in the sense they can be
substituted for any value while still satisfying the constraint. Continuing with
evaluation of the second constraint, all (<4) l , we further refine the variables.
We consider a partial solution, in which the constraint is not yet satisfied, to
illustrate a situation in which excessive backtracking will occur:

l = [1, 1, x2, x3]

This list begins with two ones and according to the current constraint, all (<4) l ,
we have neither failed nor succeeded and as such we should carry on refining x2
and x3. However, when we arrive at the final constraint, allDiff l , this partial
solution will fail, and we have to backtrack over all combinations of x2 and
x3 before we can continue again. Moreover, as we consider generating longer
permutations, the amount of backtracking increases exponentially.

Note that the problem is not resolved by reordering the constraints. For
example, suppose that we swapped the order of the last two constraints:

perm n l = length l ≡ n ∧ allDiff l ∧ all (<n) l

Then we quickly run into a similar issue. For example, the partial solution,
l = [4, x1, x2, x3] does not fail the allDiff l constraint, however it will fail the

all (<4) l constraint but only after the remaining variables x1–x3 are refined
while evaluating allDiff . In both cases, the backtracking is caused because a
partial solution fails to satisfy a later constraint but this is not evident at the
time due to the evaluation order. A natural way to avoid this problem is to
evaluate all the constraints simultaneously, rather than sequentially.

To realise this behaviour, we replace traditional pattern matching in our
language with overlapping pattern matching. Pattern matching in the language
is then order-independent, and in each iteration of needed narrowing all relevant
arguments to a pattern match are normalised. By way of example, consider the
logical conjunction operator, which is traditionally defined as follows:

False ∧ = False
True ∧ x = x

Using this definition, progress can only be made by evaluating the first argument
of a conjunction, because each clause of the definition depends on the value of
the first argument. Instead, we re-define the operator using overlapping patterns,
using a special-purpose pragma to indicate the change in intended semantics:

{-# OVERLAP (∧) #-}
False ∧ = False

∧ False = False
True ∧ x = x
x ∧ True = x

The definition has two new clauses, given by simply commuting the order of
the arguments in the original definition. The idea is that a pattern match can
succeed on any of the four clauses, independent of the order that they are stated
in. Using this definition, progress can be made by evaluating either argument of
the conjunction as the new clauses are no longer dependent on the first argument.
For example, we can now reduce x ∧ False to False for any expression x , which
is not the case with the original definition. To take advantage of this additional
power, the underlying needed narrowing mechanism must be modified to evaluate
both arguments of the pattern match before it refines variables.

In perm example above, we considered the list l = [1, 1, x2, x3] and found that
it required a large amount of backtracking. In particular, the constraint allDiff l
only failed once we had considered all combinations of x2 and x3. The new
overlapping conjunction operator avoids this problem because it is not biased
to the left-argument, allowing allDiff l to fail immediately for this example list
without the need to further refine the remaining variables.

This additional efficiency is also borne out in practice. For example, using
the implementation that we describe in section 4, in the time it takes to generate
one hundred valid permutations of length eight for the perm constraint defined
using the traditional conjunction operator, we can generate one hundred valid
permutations of length thirty using the overlapping version.

However, we have to be careful when using overlapping pattern matching not
to introduce non-determinism. Consider the following dangerous function:

{-# OVERLAP danger #-}
danger False = False
danger False = True
danger True True = True

Using this definition, danger False False can reduce to either False or True,
depending on whether the first or second clause is used, and is therefore non-
deterministic. To counter this, we require confluence laws which guarantee that
evaluation is deterministic if all expressions are terminating.

Other logical operators such as disjunction and implication can be defined
using overlapping patterns in a similar manner to conjunction, and will ben-
efit from similar improvements in efficiency. The mechanism can also be used
with other data types. For example it is straightfoward to define overlapping
versions of the addition and maximum operators on natural numbers, and for
the applicative operator <∗> on the Maybe type [14]. As illustrated by the latter
example, overlapping definitions are not restricted to commutative operators.
The maximum function is defined and used in section 5, and a range of other
useful overlapping definitions are provided in our implementation [8].

3 Generalizing and Formalizing

In this section we define the syntax and semantics of our language of overlapping
patterns. We consider the normalising subset of the language and show that a
confluence restriction on definitions is sufficient to guarantee that the language
is deterministic. We then extend the semantics with needed narrowing, and show
that the new semantics is sound and complete with respect to the original.

We use a simple functional programming core language with definitions, con-
structors, variables, lambda expressions and application. To simplify the theory,
the language only allows one form of pattern matching: at the top-level of a
function definition, interpreted in an overlapping, order-independent manner.
However, other forms of pattern matching, such as case expressions and non-
overlapping patterns, can readily be rewritten in this form.

The syntax of the language is formally defined as follows:

DefnX ::= Var Patt = ExprX
ExprX ::= Con | Var | X | ExprX ExprX | λVar . ExprX

Patt ::= Con Patt | Var

That is, a definition is made up of a list of clauses, with a pattern for each
argument on the left and an expression on the right. We use an overline to
represent a list of elements, e.g. Patt is a potentially empty list of patterns.
Expressions and definitions are parameterised by a set of free variables X, which
is only used in the needed narrowing semantics. The language has standard set
of typing rules, which we omit for brevity. Each type has a set of constructors
and the patterns used in definitions should form a covering of these constructors.

Each variable should only appear once in a pattern, and the only free variables
in an expression should be those that appear in the set X .

We often use f for definitions, e for expressions, c for constructors, u and v
for closed variables, x and y for free variables, and p and q for patterns.

3.1 Semantics

We give a standard small-step operational semantics to the language in a con-
textual style. We start by defining a full reduction semantics, in which any re-
ducible term in an expression can be reduced. This allows us to define notions of
equivalence and establish confluence properties. We then define a call-by-name
evaluation strategy by limiting the form of contexts that can be used, which is
then used to define the needed narrowing strategy.

First we define a local semantics→R ⊆ ExprX×ExprX that performs basic
reduction steps on expressions, which is then lifted into an evaluation context. As
usual, a substitution is a mapping from variables to expressions, and we write
e[s] for the application of a substitution to each variable in an expression, ∅
for the identity substitution that maps each variable to itself, and s; t for the
composition of substitutions. The first local rule is the standard β-rule:

(λv.e) e′ →R e[v 7→ e′]
sub

The second rule states that we can reduce a definition if the pattern of any of its
clauses matches the arguments, where f p = e ∈ defn(f) means that the clause
f p = e is part of the definition for the function f . In contrast to traditional
pattern matching, the clauses of a definition may be applied in any order.

f p = e′ ∈ defn(f) Matches(p, e, s)

f e→R e
′[s]

match

The predicate Matches used above captures the idea of a successful match of ex-
pressions against patterns, where Match gives the definition for a single pattern,
Matches for a list of patterns, and s is the resulting substitution:

Match(v, e, {v 7→ e})
Matches(p, e, s)

Match(c p, c e, s)

Matches(ε, ε, ∅)
Match(p, e, s) Matches(p, e, t)

Matches(p p, e e, s; t)

In turn, a context is an expression with a singular hole in any location, as
defined by the following set of inference rules:

[] context
hole

C context

(λv.C) context
lam

C context

(C e) context
app-l

C context

(e C) context
app-r

We use inference rules above rather than a grammer because the extra generality
of this notation is used when contexts are revised later on. As usual, we write C[e]
for the result of replacing the hole in C with the expression e.

Using the local semantics and the notion of contexts we can now define the
full reduction semantics for expressions in our language.

Definition 1. The full reduction semantics,→⊆ ExprX ×ExprX , is given by:

e→R e
′ C context

C[e]→ C[e′]

Definition 2. →∗ is the reflexive/transitive closure of →.

To ensure that our language is deterministic and avoid examples such as
danger False False from section 2 that have more than one normal form, we
require all definitions to satisfy a confluence property. To formalise this property
we first define the notions of definitional equivalence and unification.

Definition 3. Two expressions are definitionally equivalent, written e ≡ e′, if
there exists reduction sequences from e and e′ to the same expression:

e ≡ e′ ⇐⇒ ∃e′′. e→∗ e′′ ∧ e′ →∗ e′′

Informally, two patterns are unifiable if there exists an expression which
matches both the patterns. We can formalise this by giving a pair of substitutions
which when applied to each pattern yield the common expression.

Definition 4. The most general unifier is defined by the inference rules below.
Unify(p, q, s1, s2) denotes the unification of patterns p and q by substitutions
s1 and s2, and similarly for a list of patterns with Unifies. Note we are using
the assumption that every variable appears only once in each pattern here.

Unifies(p, q, s1, s2)

Unify(c p, c q, s1, s2) Unify(v, p, {v 7→ p}, ∅)

Unify(p, v, ∅, {v 7→ p})

Unifies(ε, ε, ∅, ∅)
Unify(p, q, s1, s2) Unifies(p, q, s′1, s

′
2)

Unifies(p p, q q, s1; s′1, s2; s′2)

This definition has the expected behaviour, that is:

Unify(p, q, s1, s2) =⇒ p[s1] = q[s2] (unifier)

∧ ∀t1t2. p[t1] = q[t2]. ∃r. s1; r = t1 ∧ s2; r = t2 (most general)

If the patterns of two clauses of a definition are unifiable then, given a suit-
able context, it is possible for two different MATCH reductions in our semantics to

be applied. In order to maintain determinism for such clauses a confluence re-
striction is required. The confluence restriction states that the right-hand sides
of each pair of clauses must be definitionally equivalent under their unifying
substitution if one exists. For the terminating subset of the language we can
check whether a definition satisfies the confluence property automatically by
generating the unifiers pairwise and normalising each clause.

Definition 5. A definition satisfies the confluence restriction if for any pair of
clauses, f p = e and f q = e′, we have the following property:

Unifies(p, q, s1, s2) =⇒ e[s1] ≡ e′[s2]

Theorem 1. The relation →∗ is confluent if all the definitions satisfy the con-
fluence restriction, i.e. for any reductions e →∗ e1, e →∗ e2, there exists an
expression e′ such that e1 →∗ e′ and e2 →∗ e′.

Proof. By parallel reduction with special consideration for overlapping patterns.
ut

It follows in the standard way from the above confluence property that any
expression that only has finite reduction sequences has precisely one normal form.
Hence, our semantics is deterministic for such expressions. We return to the issue
of expressions with infinite reduction sequences in the concluding section.

3.2 Evaluation Order

Our current semantics allows reduction rules to be applied in any context and
in any order. This is convenient for defining the behavioural properties of the
semantics, but in order to define the needed narrowing semantics and give an
efficient implementation, we need to restrict where reduction rules are applied.
To do this we define a subset of contexts called evaluation contexts.

Our notion of evaluation context is call-by-name, and hence only evaluates
the left-hand side of an application. When the left-most expression is a definition,
we evaluate the arguments until a pattern match is possible. For efficiency, we
only reduce arguments that could lead to a pattern match. Sometimes more
than one argument needs to be reduced to allow a pattern match, in which case
we reduce the arguments in a left-biased order. The rules are defined formally
below, where C is a list of expressions with one context.

• evalcxt
hole

C evalcxt

(C e) evalcxt
app-l

Subjects(C, f)

(f C) evalcxt
args

The Subject predicates specify the parts of the arguments that should be
reduced. The contexts which form the subjects have a clause of the definition for
which they are the first sub-expression blocking the pattern match. All expres-
sions to the left of the subject should already match their respective patterns in

the clause. The predicates are defined by the following rules:

Subject(C, p) Matches(p, e0,) f p0 p p1 = ∈ defn(f)

Subjects(e0 C e1, f)

C evalcxt

Subject(C, c p)

Subject(C, p) Matches(p0, e0,)

Subject(c e0 C e1, c p0 p p1)

Definition 6. The evaluation reduction semantics, →E , is now defined by:

C evalcxt e→R e
′

C[e]→E C[e′]

3.3 Needed Narrowing

The needed narrowing semantics reduces an expression until all the evaluation
contexts are suspended on a free variable. At this point we refine the left-most
suspending variable to a new value, with the resulting refinements to the free
variables being stored in an accompanying substitution. We call this type of
substitution a refinement to disambiguate it from the general notion.

Formally, a refinement σ of type X 7→ Y is a function from the free variable
set X to partial values with free variables Y , where a partial value is a term build
up from constructors and variables. Composition of refinements, which we denote
by >=>, is defined in the standard way. The null refinement, return ∈ X 7→ X,
corresponds to the trivial substitution that maps each free variable to itself.

Definition 7. The narrowing set of a expression, narrowing(e), is the set of
refinements that replace the left-most suspended variable with a constructor of
the correct type with new free variables for the fields. The narrowing set should
be complete, in the sense that it contains every constructor of the type.

For example, the narrowing set for an expression suspended on a variable x
of type Nat is (where x/c is the point refinement replacing x with c):

{x/ Zero, x/ Suc y} (y is a fresh variable)

We can now define the needed narrowing reduction as follows:

Definition 8. The needed narrowing reduction, ⊆ ExprX ×(ExprY ×X 7→
Y), is defined by the following two inference rules:

e→E e
′

e 〈e′, return〉
e 6→E σ ∈ narrowing(e)

e 〈e[σ], σ〉

The first rule states that any evaluation reduction is also a needed narrowing
reduction, with no refinement necessary. The second states that if no such re-
duction is possible then a refinement from the narrowing set should be used.

Definition 9. The natural extension to the reflexive/transitive closure of the
needed narrowing reduction is given by composing the resulting refinements:

e ∗ 〈e[σ], σ〉
e 〈e, σ〉 e′ ∗ 〈e′′, σ′〉

e ∗ 〈e′′, σ >=> σ′〉

Note that in the reflexive case we use an arbitrary substituton σ rather than
the null refinement return, as this simplifies the formulation of the completeness
result for our new semantics, which we now present along with soundness.

Theorem 2. (Needed narrowing is sound.) For every needed narrowing reduc-
tion sequence there exists a corresponding reduction in the original semantics:

e ∗ 〈e′, σ〉 =⇒ e[σ]→∗E e′

Proof. By induction on the needed narrowing reduction chain. ut
To ensure that the corresponding completeness theorem is valid, we restrict

our attention to expressions that strongly normalise under any refinement, which
we denote using the predicate Norm.

Theorem 3. (Needed narrowing is complete.) For every reduction of a normal-
ising expression there is a corresponding needed narrowing reduction:

Norm(e0) ∧ e0[σ]→∗E e1 =⇒ ∃ e′1. e0 ∗ 〈e′1, σ〉 ∧ e1 ≡ e′1

Proof. By induction on the length of reduction sequences, which are guaranteed
to be finite by the normalisation precondition. In order to complete the proof,
we require a slightly generalised induction hypothesis:

Norm(e0) ∧ Norm(e′0) ∧ e0[σ]→∗E e1 ∧ e0 ≡ e′0
=⇒ ∃ e′1. e′0 ∗ 〈e′1, σ〉 ∧ e1 ≡ e′1

ut

4 Implementation

In this section we give an overview of our prototype implementation of a property-
based testing system based upon the ideas that we have introduced in the pre-
vious sections. The system itself is freely available on GitHub [8].

The source language used in the implementation is a core functional lan-
guage with a Haskell-like syntax. The language includes algebraic data types
and supports definitions with both overlapping and traditional pattern match-
ing. Definitions are not currently checked for confluence, but as noted earlier
this would be possible in a more mature implementation. For the purposes of
the case studies in the next section we use Haskell syntax, which is translated
into caseless monomorphic code in our implementation.

The implementation realises the needed-narrowing evaluation in a virtual ma-
chine encoded in Haskell. The result of evaluation is given by a lazy search tree,
where each node comprises a free variable and sub-trees that provide construc-
tor bindings for the variable, and the leaves are normal-form results. Different
search strategies correspond to different methods of traversing the tree.

Properties in our system are functions with return type Result , which repre-
sents three possible outcomes: a failed precondition, in which case the test case
is invalid; a successful result, where the test case satisfies the property; and a
failure, where the test case is a counterexample. Properties are typically defined
using a specialised implication operator (=⇒) :: Bool → Bool → Result .

Our system implements a random search strategy. At each node we select
a random constructor according to a defined distribution, until we arrive at a
result. If the precondition failed, we backtrack to try and find a valid result. It
is sensible to limit the amount of backtracking as sometimes we might arrive at
a state with no nearby solutions. We do this by limiting how many variables we
can reverse, randomly enumerating all possible constructors at each variable in
an attempt to find a continuation. For example, if the backtrack limit is set to
three, and a failure occurs at a node which is twelve deep in the tree, we will
backtrack to a minimum of depth nine in search of a solution.

5 Case Studies

In this section we consider two examples of using our system in practice. The
first example involves the generation of ordered trees and demonstrates how
overlapping patterns can be used to encode bespoke size constraints. The second
generates typed expressions for a simple language and demonstrates a useful
technique for writing efficient narrowing generators. In both examples we focus
on the generation of data satisfying a constraint.

Our aim in each case is to find a definition of the constraint that eliminates
the need for backtracking (apart from rebinding of a single constructor). We
say that such a constraint fails fast. Formally, a constraint fails fast if when
testing any partial value against the constraint it either directly fails or there is
a refinement of the value that succeeds. The needed narrowing generator formed
by a constraint which fails fast is generally efficient. All our examples, together
with more detailed performance results, are available on GitHub [8].

5.1 Ordered Trees

Consider a type of binary trees with natural numbers stored in the nodes, with
the additional constraint that numbers within the tree are ordered:

data Tree = Leaf | Node Tree Nat Tree

ordered :: Tree → Bool
ordered Leaf = True

ordered (Node t0 a t1) = allTree (6 a) t0 ∧ allTree (> a) t1
∧ ordered t0 ∧ ordered t1

Note that ordered uses the overlapping version of conjunction to ensure that it
can be tested in an efficient manner, and is defined using an auxiliary function
allTree that checks if every element in a tree satisfies a given condition.

Now consider a function to delete a number from a tree while still maintaining
the ordering invariant, as captured by the following property [15, 16]:

propDelete :: Nat → Tree → Bool
propDelete a t = ordered t =⇒ ordered (delete a t)

Unfortunately, if we test this property in its current form it will often fail to halt,
because randomly generated values of recursively defined types such as trees are
often infinite. To resolve this problem, narrowing-based testers usually limit the
size of the solution by depth or by the number of constructors [15, 16, 19].
However, these metrics are often too simple to avoid backtracking.

To avoid bactracking in our example we need to limit only the depth of
the tree and not the depth of elements (limiting the depth of elements limits
their value but they have a minimum value dictated by the preceding elements.)
Overlapping patterns allow us to limit the size with bespoke constraints. A
function to calculate the depth of a tree can be defined as follows:

depthTree :: Tree → Nat
depthTree Leaf = Zero
depthTree (Node t1 t2) = Suc (max (depthTree t1) (depthTree t2))

In turn, our property can then be refined to include a depth limit:

propDelete n a t = ordered t ∧ depthTree t 6 n =⇒ ordered (delete a t)

The use of overlapping patterns is crucial in two ways for this kind of ex-
ample. Firstly, in the new definition of propDelete, the sizing constraint relies
on overlapping conjunction to be visible while the ordering constraint is being
tested. Secondly, and more interestingly, the definition for depthTree relies on an
overlapping version of the maximum function for natural numbers:

{-# OVERLAP max #-}
max :: Nat → Nat → Nat
max Zero Zero = Zero
max (Suc x) y = Suc (max x (pred y))
max x (Suc y) = Suc (max (pred x) y)

The auxiliary function pred decrements a natural number, stopping at zero. A
traditional maximum function would be left-biased and so the right branch of
the tree could become arbitrarily large without triggering the size limit.

The constraint ordered t ∧ depthTree t 6 n fails fast for any n. Although on
initial testing overlapping patterns may not seem to give a performance benefit,
analysis of the results show that without overlapping patterns the distribution
is heavily skewed towards trivial small trees. If the shape of the tree is given,
overlapping patterns offer a significant performance improvement.

5.2 Well-Typed Expressions

In this example we generate typed expressions for a simple language. We use this
example to demonstrate a technique for building constraints that fail fast which
combines well with the use of overlapping patterns. The language has addition,
conditional expressions, natural numbers, and logical values:

data Expr = Add Expr Expr | If Expr Expr Expr | N Nat | B Bool

A useful property for this language states that for any well-typed expression
up to a given depth, evaluating the expression will not produce an error:

propEval n e = typed e ∧ depthExpr e 6 n =⇒ notError (eval e)

We will focus on the typed condition. This condition has a simple definition in
terms of a more general function typeof that attempts to determine the type
of an expression, which may be either Nat or Bool , with the Maybe mechanism
being used handle the possibility that an expression may be ill-typed:

data Type = Nat | Bool

typeof :: Expr → Maybe Type
typeof (Add e e ′) = case (typeof e, typeof e ′) of

(Just Nat , Just Nat)→ Just Nat
→ Nothing

typeof (If e e ′ e ′′) = case (typeof e, typeof e ′, typeof e ′′) of
(Just Bool , Just t ′, Just t ′′) | t ′ ≡ t ′′ → Just t ′

→ Nothing
typeof (N) = Just Nat
typeof (B) = Just Bool

However, the function typeof has an inefficient narrowing semantics. For exam-
ple, an expression of the form If (Add u v) w x is ill-typed for any u, v ,w , x ,
because it is already evident that the first argument is not a logical value, but a
version of typed defined using the function typeof would not be able to deduce
this until specific expressions had been filled in for the variables u and v . In
other words, the typed condition does not fail fast.

To solve this problem we define an alternative constraint, hastype :: Expr →
Type → Bool , in which the type of the expression is taken as an argument
rather then returned as a result. In this manner, the type is refined during the
narrowing process alongside the expression itself.

hastype (Add e e ′) Nat = hastype e Nat ∧ hastype e ′ Nat
hastype (If e e ′ e ′′) t = hastype e Bool ∧ hastype e ′ t ∧ hastype e ′′ t
hastype (N) Nat = True
hastype (B) Bool = True
hastype = False

If we reconsider our example expression, If (Add u v) w x , then we can see
our new typing constraint identifies this as being ill-typed:

hastype (If (Add u v) w x) t
= hastype (Add u v) Bool ∧ hastype w t ∧ hastype x t
= False ∧ hastype w t ∧ hastype x t
= False

The hastype program does not fail fast but satisfies a similar weaker condition:
any partial value formed by evaluating the constraint with free arguments either
directly fails when applied to the constraint, or there is a refinement of the value
that succeeds. Using the hastype constraint, our original property concerning
well-typed expressions up to a given depth can now be reformulated to include
the type of the expression as an additional narrowing variable:

propEval n t e = hastype e t ∧ depthExpr t 6 n =⇒ noError (eval e)

Note that the typing variable has no effect on the validity of the property,
and is only used to make the narrowing process more efficient. Without the use
of overlapping conjunction, attempting to generate expressions that satisfy both
of these constraints simultaneously would typically fail to terminate, whereas
the above definition can generate such expressions in an efficient manner.

5.3 Other Examples

We have also considered two more sophisticated examples, in the form of red-
black trees and simply-typed lambda expressions. In both cases we were able
to create generators that are both practical in terms of efficiency and modular
in terms of how they are writen. For example, in the case of red-black trees,
the required constraint is obtained simply by combining separate constraints for
red nodes, black nodes, the ordering of elements, and the depth of the tree. Our
final red-black tree implementation is similar to that used the Reach system [15],
except that the additional efficiency that arises from using overlapping patterns
results in the consistent finding of a bug which this system struggles to find.

6 Related Work

The functional logic language Curry [11] implements needed narrowing, and
supports the use of overlapping patterns in definitions. However, the semantics is
different to our system. In particular, our overlapping patterns are deterministic,
with evaluation proceeding along a single branch, whereas in Curry such patterns
are non-determistic, with evaluation considering every matching branch.

The form of overlapping patterns that we use in our system is similar to that
proposed by Cockx [5, 6], who develops the idea in the context of dependent type
theory and the Agda programming language. However, the intended purpose is
different, with our aim being to improve the performance of property-based
testing under a needed-narrowing semantics, and Cockx seeking to simply the
development of proofs in a dependently-typed setting.

A number of narrowing-based testing tools use the notion of parallel con-
junction. The idea originates in Lindblad’s work on data generation [13] and
Lazy Smallcheck [19], both of which use an enumerative style of testing. Subse-
quently, parallel conjunction has been used by Claessen et al. [3] to randomly
generate data with a uniform distribution. Parallel conjunction is equivalent to
overlapping conjunction, but whereas previous testing work using this operator
has been more practically focused, we have given a precise narrowing semantics
for a general form of overlapping definitions. The research of Claessen et al. is
the most similar to our work, in that they also use a narrowing-style for random
testing. However, their aim of producing a uniform distribution, via the use of
Feat [7], makes backtracking hard to avoid for many problems.

7 Conclusion and Future Work

In this article we have motivated and formalised an extension to needed narrow-
ing to allow overlapping patterns in definitions. We use the needed narrowing
evaluation to generate data satisfying a constraint from a program specifying a
constraint. Overlapping patterns allow us to achieve this in an efficient manner
using composable constraints. Below we discuss some limitations of our approach,
and suggest some possible directions for further work.

While overlapping patterns can improve the performance of property-based
testing, the use of narrowing can lead to subtle performance issues, as we saw in
section 5 with the typeof constraint. To avoid performance issues close attention
must be paid to possible sources of backtracking. Overlapping patterns help
by making it easier to define constraints with limited backtracking, but they
are no silver bullet, and further research is required to establish appropriate
methodologies for identifying and limiting sources of backtracking.

The use of an overlapping conjunction operator is ubiquitous and perfor-
mance critical in our examples, but it is not yet clear whether the more general
notion of overlapping patterns is necessary. For example, in the case studies that
we have considered the use of other overlapping functions, such as max , can be
replaced by additional narrowing variables. However, the the resulting function
will usually be less general than its overlapping counterpart.

The interaction between other language features, narrowing and overlapping
patterns is also an interesting topic for further work. Adding the capability to
refine and narrow first and higher-order functions is one area for which the trie
representation of partial functions used in the extended Lazy Smallcheck [18]
offers a starting direction. We are also keen to explore how our approach can be
extended to handle coinductive types and dependent types.

To demonstrate the practicality of our approach, we developed a prototype
implementation in Haskell. It would be interesting to add overlapping patterns
to a more established tool, either a property based testing library such Lazy
Smallcheck [19], or a functional logic language such as Curry [11]. An alternative
approach to enable practical use would be to extend the implementation to
automatically translate a precondition into a QuickCheck generator [4].

References

[1] Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the
ACM 47(4) (2000)

[2] Christiansen, J., Fischer, S.: EasyCheck - Test Data for Free. In: Lecture Notes
in Computer Science. vol. 4989 (2008)

[3] Claessen, K., Dureg̊ard, J., Pa lka, M.H.: Generating Constrained Random Data
with Uniform Distribution. In: International Symposium on Functional and Logic
Programming (2014)

[4] Claessen, K., Hughes, J.: QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In: International Conference on Functional Programming
(2000)

[5] Cockx, J.: Overlapping and Order-Independent Patterns in Type Theory. Ph.D.
thesis, Master thesis, KU Leuven (2013)

[6] Cockx, J., Piessens, F., Devriese, D.: Overlapping and Order-Independent Pat-
terns. In: European Symposium on Programming Languages and Systems (2014)

[7] Dureg̊ard, J., Jansson, P., Wang, M.: Feat: Functional Enumeration of Algebraic
Types. Haskell Symposium 47(12) (2012)

[8] Fowler, J.: The overlapCheck system for property-based testing (2016), https:
//github.com/JonFowler/overlapCheck

[9] Fowler, J., Hutton, G.: Towards a Theory of Reach. International Symposium on
Trends in Functional Programming (2015)

[10] Hanus, M.: A Unified Computation Model for Functional and Logic Programming.
In: Symposium on Principles of Programming Languages (1997)

[11] Hanus, M.: Curry - An Integrated Functional Logic Language. Tech. rep. (2016)
[12] Hritcu, C., Hughes, J., Pierce, B.C., Spector-Zabusky, A., Vytiniotis, D.,

Azevedo de Amorim, A., Lampropoulos, L.: Testing Noninterference, Quickly.
In: ACM SIGPLAN Notices. vol. 48 (2013)

[13] Lindblad, F.: Property Directed Generation of First-Order Test Data. In: Sym-
posium on the Trends in Functional Programming (2007)

[14] McBride, C., Paterson, R.: Applicative Programming With Effects. Journal of
Functional Programming 18(1) (2008)

[15] Naylor, M., Runciman, C.: Finding Inputs that Reach a Target Expression. In:
International Conference on Source Code Analysis and Manipulation (2007)

[16] Naylor, M.F.: Hardware-Assisted and Target-Directed Evaluation of Functional
Programs. Ph.D. thesis, University of York (2008)

[17] Pa lka, M.H., Claessen, K., Russo, A., Hughes, J.: Testing an Optimising Compiler
by Generating Random Lambda Terms. In: International Workshop on Automa-
tion of Software Test (2011)

[18] Reich, J.S., Naylor, M., Runciman, C.: Advances in Lazy SmallCheck. In: Sym-
posium on the Implementation and Application of Functional Languages (2013)

[19] Runciman, C., Naylor, M., Lindblad, F.: SmallCheck and Lazy SmallCheck Au-
tomatic Exhaustive Testing for Small Values. In: Symposium on Haskell (2008)

https://github.com/JonFowler/overlapCheck
https://github.com/JonFowler/overlapCheck

	Failing Faster: Overlapping Patterns for Property-Based Testing*-0.3cm

