
Towards Modular Compilers for Effects

Laurence E. Day and Graham Hutton

Functional Programming Laboratory
School of Computer Science

University of Nottingham, UK

Abstract. Compilers are traditionally factorised into a number of sep-
arate phases, such as parsing, type checking, code generation, etc. How-
ever, there is another potential factorisation that has received compara-
tively little attention: the treatment of separate language features, such
as mutable state, input/output, exceptions, concurrency and so forth. In
this article we focus on the problem of modular compilation, in which the
aim is to develop compilers for separate language features independently,
which can then be combined as required. We summarise our progress to
date, issues that have arisen, and further work.

Keywords: Modularity, Haskell, Compilation, Monads

1 Introduction

The general concept of modularity can be defined as the degree to which the
components of a system may be separated and recombined. In the context of
computer programming, this amounts to the desire to separate the components
of a software system into independent parts whose behaviour is clearly speci-
fied, and can be combined in different ways for different applications. Modular-
ity brings many important benefits, including the ability to break down larger
problems into smaller problems, to establish the correctness of a system in terms
of the correctness of its components, and to develop general purpose components
that are reusable in different application domains.

In this article we focus on the problem of implementing programming lan-
guages themselves in a modular manner. In their seminal article, Liang, Hudak
and Jones [9] showed how to implement programming language interpreters in a
modular manner, using the notion of monad transformers. In contrast, progress
in the area of modular compilers has been more limited, and at present there is
no standard approach to this problem. In this article we report on our progress
to date on the problem of implementing modular compilers. In particular, the
paper makes the following contributions. We show how:

– Modular syntax for a language can be defined using the à la carte approach
to extensible data types developed by Swierstra [15];

2 Towards Modular Compilers for Effects - Day and Hutton

– Modular semantics for a language can be defined by combining the à la carte
and modular interpreters techniques, extending the work of Jaskelioff [8];

– Modular compilers can be viewed as modular interpreters that produce code
corresponding to an operational semantics of the source program;

– Modular machines that execute the resulting code can be viewed as modular
interpreters that produce suitable state transformers.

We illustrate our techniques using a simple expression language with four
features, namely integers, addition, a single exceptional value, and a catch oper-
ator for this value. The article is aimed at functional programmers with a basic
knowledge of interpreters, compilers and monads, but we do not assume spe-
cialist knowledge of monad transformers, modular interpreters, or the à la carte
technique. We use Haskell throughout as both a semantic meta-language and
an implementation language, as this makes the concepts more accessible as well
as executable, and eliminates the gap between theory and practice. The Haskell
code associated with the article is available from the authors’ web pages.

2 Setting the Scene

In this section we set the scene for the rest of the paper by introducing the prob-
lem that we are trying to solve. In particular, we begin with a small arithmetic
language for which we define four components: syntax, semantics, compiler and
virtual machine. We then extend the language with a simple effect in the form of
exceptions, and observe how these four components must be changed in light of
the new effect. As we shall see, such extensions cut across all aspects and require
the modification of existing code in each case.

2.1 A Simple Compiler

Consider a simple language Expr comprising integer values and binary addition,
for which we can evaluate expressions to an integer value:

data Expr = Val Value | Add Expr Expr

type Value = Int

eval :: Expr -> Value

eval (Val n) = n

eval (Add x y) = eval x + eval y

Evaluation of expressions in this manner corresponds to giving a denotational
semantics to the Expr datatype [14]. Alternatively, expressions can be compiled
into a sequence of low-level instructions to be operated upon by a virtual ma-
chine, the behaviour of which corresponds to a (small-step) operational seman-
tics [4]. We can compile an expression to a list of operations as follows:

Towards Modular Compilers for Effects - Day and Hutton 3

type Code = [Op]

data Op = PUSH Int | ADD

comp :: Expr -> Code

comp c = comp’ c []

comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

Note that the compiler is defined in terms of an auxiliary function comp’ that
takes an additional Code argument that plays the role of an accumulator, which
avoids the use of append (++) and leads to simpler proofs [5]. We execute the
resulting Code on a virtual machine that operates using a Stack:

type Stack = [Item]

data Item = INT Value

exec :: Code -> Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Stack

exec’ [] s = s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)

The correctness of the compiler can now be captured by stating that the result
of evaluating an expression is the same as first compiling, then executing, and
finally extracting the result value from the top of the Stack (using an auxiliary
function extr), which can be expressed in diagrammatic form as follows:

Expr

comp

��

eval // V alue

Code
exec

// Stack

extr

OO

2.2 Adding a New Effect

Suppose now that we wish to extend our language with a new effect, in the form
of exceptions. We consider what changes will need to be made to the language’s
syntax, semantics, compiler and virtual machine as a result of this extension.
First of all, we extend the Expr datatype with two new constructors:

4 Towards Modular Compilers for Effects - Day and Hutton

data Expr = ... | Throw | Catch Expr Expr

The Throw constructor corresponds to an uncaught exception, while Catch is
a handler construct that returns the value of its first argument unless it is an
uncaught exception, in which case it returns the value of its second argument.

From a semantic point of view, adding exceptions to the language requires
changing the result type of the evaluation function from Value to Maybe Value

in order to accommodate potential failure when evaluating expressions. In turn,
we must rewrite the semantics of values and addition accordingly, and define
appropriate semantics for throwing and catching.

eval :: Expr -> Maybe Value

eval (Val n) = return n

eval (Add x y) = eval x >>= \n ->

eval y >>= \m ->

return (n + m)

eval Throw = mzero

eval (Catch x h) = eval x ‘mplus‘ eval h

In the above code, we exploit the fact that Maybe is monadic [12, 16, 17]. In
particular, we utilise the basic operations of the Maybe monad, namely return,
which converts a pure value into an impure result, (>>=), used to sequence
computations, mzero, corresponding to failure, and mplus, for sequential choice.

Finally, in order to compile exceptions we must introduce new operations in
the virtual machine and extend the compiler accordingly [6]:

data Op = ... | THROW | MARK Code | UNMARK

comp :: Expr -> Code

comp e = comp’ e []

comp’ :: Expr -> Code -> Code

comp’ (Val n) c = PUSH n : c

comp’ (Add x y) c = comp’ x (comp’ y (ADD : c))

comp’ Throw c = THROW : c

comp’ (Catch x h) c = MARK (comp’ h c) : comp’ x (UNMARK : c)

Intuitively, THROW is an operation that throws an exception, MARK makes a record
on the stack of the handler code to be executed should the first argument of a
Catch fail, and UNMARK indicates that no uncaught exceptions were encountered
and hence the record of the handler code can be removed. Note that the accu-
mulator plays a key role in the compilation of Catch, being used in two places
to represent the code to be executed after the current compilation.

Because we now need to keep track of handler code on the stack as well as
integer values, we must extend the Item datatype and also extend the virtual
machine to cope with the new operations and the potential for failure:

Towards Modular Compilers for Effects - Day and Hutton 5

data Item = ... | HAND Code

exec :: Code -> Maybe Stack

exec c = exec’ c []

exec’ :: Code -> Stack -> Maybe Stack

exec’ [] s = return s

exec’ (PUSH n : c) s = exec’ c (INT n : s)

exec’ (ADD : c) s = let (INT y : INT x : s’) = s in

exec’ c (INT (x + y) : s’)

exec’ (THROW : _) s = unwind s

exec’ (MARK h : c) s = exec’ c (HAND h : s)

exec’ (UNMARK : c) s = let (v : HAND _ : s’) = s in

exec’ c (v : s’)

The auxiliary unwind function implements the process of invoking handler code
in the case of a caught exception, by executing the topmost Code record on the
execution stack, failing if no such record exists:

unwind :: Stack -> Maybe Stack

unwind [] = mzero

unwind (INT _ : s) = unwind s

unwind (HAND h : s) = exec’ h s

2.3 The Problem

As we have seen with the simple example in the previous section, extending the
language with a new effect results in many changes to existing code. In particular,
we needed to extend three datatypes (Expr, Op and Item), change the return type
and existing definition of three functions (eval, exec and exec’), and extend
the definition of all the functions involved.

The need to modify and extend existing code for each effect we wish to intro-
duce to our language is clearly at odds with the desire to structure a compiler in
a modular manner and raises a number of problems. Most importantly, changing
code that has already been designed, implemented, tested and (ideally) proved
correct is bad practice from a software engineering point of view [18]. Moreover,
the need to change existing code requires access to the source code, and demands
familiarity with the workings of all aspects of the language rather than just the
feature being added. In the remainder of this paper we will present our work to
date on addressing the above problems.

3 Modular Effects

In the previous section, we saw one example of the idea that computational
effects can be modelled using monads. Each monad normally corresponds to a

6 Towards Modular Compilers for Effects - Day and Hutton

single effect, and because most languages involve more than one effect, the issue
of how to combine monads quickly arises. In this section, we briefly review the
approach based upon monad transformers [9].

In Haskell, monad transformers have the following definition:

class MonadTrans t where

lift :: Monad m => m a -> t m a

Intuitively, a monad transformer is a type constructor t which, when applied to
a monad m, produces a new monad t m. Monad transformers are also required
to satisfy a number of laws, but we omit the details here. Associated with every
monad transformer is the operation lift, used to convert from values in the base
monad m to the new monad t m. By way of example, the following table sum-
marises five commonly utilised computational effects, their monad transformer
types, and the implementations of these types:

Effect Transformer Type Implementation

Exceptions ErrorT m a m (Maybe a)

State StateT s m a s → m (a, s)

Environment ReaderT r m a r → m a

Logging WriterT w m a m (a, w)

Continuations ContT r m a (a → m r) → m r

The general strategy is to stratify the required effects by starting with a base
monad, often the Identity monad, and applying the appropriate transformers.
There are some constraints regarding the ordering; for example, certain effects
can only occur at the innermost level and certain effects do not commute [9],
but otherwise effects can be ordered in different ways to reflect different intended
interactions between the features of the language.

To demonstrate the concept of transformers, we will examine the transformer
for exceptions in more detail. Its type constructor is declared as follows:

newtype ErrorT m a = E { run :: m (Maybe a) }

Note that ErrorT Identity is simply the Maybe monad. It is now straightfor-
ward to declare ErrorT as a member of the Monad and MonadTrans classes:

instance Monad m => Monad (ErrorT m) where

return :: a -> ErrorT m a

return a = E $ return (Just a)

(>>=) :: ErrorT m a -> (a -> ErrorT m b) -> ErrorT m b

(E m) >>= f = E $ do v <- m

case v of

Nothing -> return Nothing

Just a -> run (f a)

Towards Modular Compilers for Effects - Day and Hutton 7

instance MonadTrans ErrorT where

lift :: m a -> ErrorT m a

lift m = E $ m >>= \v -> return (Just v)

In addition to the general monadic operations, we would like access to other
primitive operations related to the particular effect that we are implementing.
In this case, we would like to be able to throw and catch exceptions, and we can
specify this by having these operations supported by an error monad class:

class Monad m => ErrorMonad m where

throw :: m a

catch :: m a -> m a -> m a

We instantiate ErrorT as a member of this class as follows:

instance Monad m => ErrorMonad (ErrorT m) where

throw :: ErrorT m a

throw = E $ return Nothing

catch :: ErrorT m a -> ErrorT m a -> ErrorT m a

x ‘catch‘ h = E $ do v <- run x

case v of

Nothing -> run h

Just a -> return v

We can also declare monad transformers as members of effect classes other
than their own. Indeed, this is the primary purpose of the lift operation. For
example, we can extend StateT to support exceptions as follows:

instance ErrorMonad m => ErrorMonad (StateT s m) where

throw :: StateT s m a

throw = lift . throw

catch :: StateT s m a -> StateT s m a -> StateT s m a

x ‘catch‘ h = S $ \s -> run x s ‘catch‘ run h s

In this manner, a monad that is constructed from a base monad using a number
of transformers comes equipped with the associated operations for all of the
constituent effects, with the necessary liftings being handled automatically.

Returning to our earlier remark that some transformers do not commute, the
semantics resulting from lifting in this manner need not be unique for a set of
transformers. For example, consider a monad supporting both exceptions and
state. Depending on the order in which this monad is constructed, we may or
may not have access to the state after an exception is thrown, as reflected in the
types s -> (Maybe a, s) and s -> Maybe (a, s). Semantic differences such

8 Towards Modular Compilers for Effects - Day and Hutton

as these are not uncommon when combining effects, and reflect the fact that the
order in which effects are performed makes an observable difference.

Now that we have reviewed how to handle effects in a modular way, let us
see how to modularise the syntax of a language.

4 Modular Syntax and Semantics

We have seen that adding extra constructors to a datatype required the mod-
ification of existing code. In this section, we review the modular approach to
datatypes and functions over them put forward by Swierstra [15], known as
datatypes à la carte, and show how it can be used to obtain modular syntax and
semantics for the language Expr previously described.

4.1 Datatypes à La Carte

The underlying structure of an algebraic datatype such as Expr can be captured
by a constructor signature. We define signature functors for the arithmetic and
exceptional components of the Expr datatype as follows:

data Arith e = Val Int | Add e e

data Except e = Throw | Catch e e

These definitions capture the non-recursive aspects of expressions, in the sense
that Val and Throw have no subexpressions, whereas Add and Catch have two.
We can easily declare Arith and Except as functors in Haskell:

class Functor f where

fmap :: (a -> b) -> f a -> f b

instance Functor Arith where

fmap :: (a -> b) -> Arith a -> Arith b

fmap f (Val n) = Val n

fmap f (Add x y) = Add (f x) (f y)

instance Functor Except where

fmap :: (a -> b) -> Except a -> Except b

fmap f Throw = Throw

fmap f (Catch x h) = Catch (f x) (f h)

For any functor f, its induced recursive datatype, Fix f, is defined as the
least fixpoint of f. In Haskell, this can be implemented as follows [11]:

newtype Fix f = In (f (Fix f))

Towards Modular Compilers for Effects - Day and Hutton 9

For example, Fix Arith is the language of integers and addition, while Fix

Except is the language comprising throwing and catching exceptions. We shall
see later on in this section how these languages can be combined.

Given a functor f, it is convenient to use a fold operator (sometimes called
a catamorphism) [10] in order to define functions over Fix f [15]:

fold :: Functor f => (f a -> a) -> Fix f -> a

fold f (In t) = f (fmap (fold f) t)

The parameter of type f a -> a is called an f-algebra, and can be intuitively
viewed as a directive for processing each constructor of a functor. Given such an
algebra and a value of type Fix f, the fold operator exploits both the functorial
and recursive characteristics of Fix to process recursive values.

The aim now is to take advantage of the above machinery to define a seman-
tics for our expression language in a modular fashion. Such semantics will have
type Fix f -> m Value for some functor f and monad m; we could also abstract
over the value type, but for simplicity we do not consider this here. To define
functions of this type using fold, we require an appropriate evaluation algebra,
which notion we capture by the following class declaration:

class (Monad m, Functor f) => Eval f m where

evalAlg :: f (m Value) -> m Value

Using this notion, it is now straightforward to define algebras that correspond
to the semantics for both the arithmetic and exception components:

instance Monad m => Eval Arith m where

evalAlg :: Arith (m Value) -> m Value

evalAlg (Val n) = return n

evalAlg (Add x y) = x >>= \n ->

y >>= \m ->

return (n + m)

instance ErrorMonad m => Eval Except m where

evalAlg :: Except (m Value) -> m Value

evalAlg (Throw) = throw

evalAlg (Catch x h) = x ‘catch‘ h

There are three important points to note about the above declarations. First of
all, the semantics for arithmetic have now been completely separated from the
semantics for exceptions, in particular by way of two separate instance decla-
rations. Secondly, the semantics are parametric in the underlying monad, and
can hence be used in many different contexts. And finally, the operations that
the underlying monad must support are explicitly qualified by class constraints,
e.g. in the case of Except the monad must be an ErrorMonad. The latter two
points generalise the work of Jaskelioff [8] from a fixed monad to an arbitrary

10 Towards Modular Compilers for Effects - Day and Hutton

monad supporting the required operations, resulting in a clean separation of the
semantics of individual language components.

With this machinery in place, we can now define a general evaluation function
of the desired type by folding an evaluation algebra:

eval :: (Monad m, Eval f m) => Fix f -> m Value

eval = fold evalAlg

Note that this function is both modular in the syntax of the language and para-
metric in the underlying monad. However, at this point we are only able to take
the fixpoints of Arith or Except, not both. We need a way to combine signature
functors, which is naturally done by taking their coproduct (disjoint sum) [9].
In Haskell, the coproduct of two functors can be defined as follows:

data (f :+: g) e = Inl (f e) | Inr (g e)

instance (Functor f, Functor g) => Functor (f :+: g) where

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b

fmap f (Inl x) = Inl (fmap f x)

fmap g (Inr y) = Inr (fmap g y)

It is then straightforward to obtain a coproduct of evaluation algebras:

instance (Eval f m, Eval g m) => Eval (f :+: g) m where

evalAlg :: (f :+: g) (m Value) -> m Value

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

The general evaluation function can now be used to give a semantics to lan-
guages with multiple features by simply taking the coproduct of their signature
functors. Unfortunately, there are three problems with this approach. First of
all, the need to include fixpoint and coproduct tags (In, Inl and Inr) in values
is cumbersome. For example, if we wished the concrete expression 1 + 2 to have
type Fix (Arith :+: Except), it would be represented as follows:

In (Inl (Add (In (Inl (Val 1)) (In (Inl (Val 2))))))

Secondly, the extension of an existing syntax with additional operations may
require the modification of existing tags, which breaks modularity. And finally,
Fix (f :+: g) and Fix (g :+: f) are isomorphic as languages, but require
equivalent values to be tagged in different ways. The next two sections review
how Swierstra resolves these problems [15], and shows how this can be used to
obtain modular syntax and semantics for our language.

4.2 Smart Constructors

We need a way of automating the injection of values into expressions such that
the appropriate sequences of fixpoint and coproduct tags are prepended. This

Towards Modular Compilers for Effects - Day and Hutton 11

can be achieved using the concept of a subtyping relation on functors, which can
be formalised in Haskell by the following class declaration, in which the function
inj injects a value from a subtype into a supertype:

class (Functor sub, Functor sup) => sub :<: sup where

inj :: sub a -> sup a

It is now straightforward to define instance declarations to ensure that f is a
subtype of any coproduct containing f, but we omit the details here. Using the
notion of subtyping, we can define an injection function,

inject :: (g :<: f) => g (Fix f) -> Fix f

inject = In . inj

which then allows us to define smart constructors which bypass the need to tag
values when embedding them in expressions:

val :: (Arith :<: f) => Int -> Fix f

val n = inject (Val n)

add :: (Arith :<: f) => Fix f -> Fix f -> Fix f

add x y = inject (Add x y)

throw :: (Except :<: f) => Fix f

throw = inject Throw

catch :: (Except :<: f) => Fix f -> Fix f -> Fix f

catch x h = inject (Catch x h)

Note the constraints stating that f must have the appropriate signature functor
as a subtype; for example, in the case of val, f must support arithmetic.

4.3 Putting It All Together

We have now achieved our goal of being able to define modular language syntax.
Using the smart constructors, we can define values within languages given as
fixpoints of coproducts of signature functors. For example:

ex1 :: Fix Arith

ex1 = val 18 ‘add‘ val 24

ex2 :: Fix Except

ex2 = throw ‘catch‘ throw

ex3 :: Fix (Arith :+: Except)

ex3 = throw ‘catch‘ (val 1337 ‘catch‘ throw)

12 Towards Modular Compilers for Effects - Day and Hutton

The types of these expressions can be generalised using the subtyping relation,
but for simplicity we have given fixed types above. In turn, the meaning of such
expressions is given by our modular semantics:

> eval ex1 :: Value

> 42

> eval ex2 :: Maybe Value

> Nothing

> eval ex3 :: Maybe Value

> Just 1337

Note the use of explicit typing judgements to determine the resulting monad.
Whilst we have used Identity (implicitly) and Maybe above, any monad satis-
fying the required constraints can be used, as illustrated below:

> eval ex1 :: Maybe Value

> Just 42

> eval ex2 :: [Value]

> []

5 Modular Compilers

With the techniques we have described, we can now construct a modular compiler
for our expression language. First of all, we define the Code datatype in a modular
manner as the coproduct of signature functors corresponding to the arithmetic
and exceptional operations of the virtual machine:

type Code = Fix (ARITH :+: EXCEPT :+: EMPTY)

data ARITH e = PUSH Int e | ADD e

data EXCEPT e = THROW e | MARK Code e | UNMARK e

data EMPTY e = NULL

There are two points to note about the above definitions. First of all, rather
than defining the Op type as a fixpoint (where Code is a list of operations), we
have combined the two types into a single type defined using Fix in order to
allow code to be processed using the generic fold; note that EMPTY now plays
the role of the empty list. Secondly, the first argument to MARK has explicit type
Code rather than general type e, which is undesirable as this goes against the
idea of treating code in a modular manner. However, this simplifies the definition
of the virtual machine and we will return to this point in the conclusion.

Towards Modular Compilers for Effects - Day and Hutton 13

The desired type for our compiler is Fix f -> (Code -> Code) for some
signature functor f characterising the syntax of the source language. To define
such a compiler using the generic fold operator, we require an appropriate
compilation algebra, which notion we define as follows:

class Functor f => Comp f where

compAlg :: f (Code -> Code) -> (Code -> Code)

In contrast with evaluation algebras, no underlying monads are utilised in the
above definition, because the compilation process itself does not involve the
manifestation of effects. We can now define algebras for both the arithmetic and
exceptional aspects of the compiler in the following manner:

instance Comp Arith where

compAlg :: Arith (Code -> Code) -> (Code -> Code)

compAlg (Val n) = pushc n

compAlg (Add x y) = x . y . addc

instance Comp Except where

compAlg :: Except (Code -> Code) -> (Code -> Code)

compAlg Throw = throwc

compAlg (Catch x h) = \c -> h c ‘markc‘ x (unmarkc c)

In a similar manner to the evaluation algebras defined in section 4.1, note that
these definitions are modular in the sense that the two language features are be-
ing treated completely separately from each other. We also observe that because
the carrier of the algebra is a function, the notion of appending code in the Add

case corresponds to function composition. The smart constructors pushc, addc
and so on are defined in the obvious manner:

pushc :: Int -> Code -> Code

pushc n c = inject (PUSH n c)

addc :: Code -> Code

addc c = inject (ADD c)

The other smart constructors are defined similarly. Finally, it is now straight-
forward to define a general compilation function of the desired type by folding
a compilation algebra, supplied with an initial accumulator empty:

comp :: Comp f => Fix f -> Code

comp e = comp’ e empty

comp’ :: Comp f => Fix f -> (Code -> Code)

comp’ e = fold compAlg e

empty :: Code

empty = inject NULL

14 Towards Modular Compilers for Effects - Day and Hutton

For example, applying comp to the expression ex3 from the previous sec-
tion results in the following Code, in which we have removed the fixpoint and
coproduct tags In, Inl and Inr for readability:

MARK (MARK (THROW NULL) (PUSH 1337 (UNMARK NULL)))

(THROW (UNMARK NULL))

6 Towards Modular Machines

The final component of our development is to construct a modular virtual ma-
chine for executing code produced by the modular compiler. Defining the under-
lying Stack datatype in a modular manner is straightforward:

type Stack = Fix (Integer :+: Handler :+: EMPTY)

data Integer e = VAL Int e

data Handler e = HAND Code e

As we saw in section 2.1, the virtual machine for arithmetic had type Code ->

Stack -> Stack, while in section 2.2, the extension to exceptions required mod-
ifying the type to Code -> Stack -> Maybe Stack. Generalising from these ex-
amples, we seek to define a modular execution function of type Code -> Stack

-> m Stack for an arbitrary monad m. We observe that Stack -> m Stack is
a state transformer, and define the following abbreviation:

type StackTrans m a = StateT Stack m a

Using this abbreviation, we now seek to define a general purpose execution func-
tion of type Fix f -> StackTrans m () for some signature functor f charac-
terising the syntax of the code, and where () represents a void result type. In
a similar manner to evaluation and compilation algebras that we introduced
previously, this leads to the following notion of an execution algebra,

class (Monad m, Functor f) => Exec f m where

execAlg :: f (StackTrans m ()) -> StackTrans m ()

for which we define the following three instances:

instance Monad m => Exec ARITH m where

execAlg :: ARITH (StackTrans m ()) -> StackTrans m ()

execAlg (PUSH n st) = pushs n >> st

execAlg (ADD st) = adds >> st

instance ErrorMonad m => Exec EXCEPT m where

execAlg :: EXCEPT (StackTrans m ()) -> StackTrans m ()

Towards Modular Compilers for Effects - Day and Hutton 15

execAlg (THROW _) = unwinds

execAlg (MARK h st) = marks h >> st

execAlg (UNMARK st) = unmarks >> st

instance Monad m => Exec EMPTY m where

execAlg :: EMPTY (StackTrans m ()) -> StackTrans m ()

execAlg (Null) = stop

The intention is that pushs, adds, etc. are the implementations of the semantics
for the corresponding operations of the machine, and >> is the standard monadic
operation that sequences two effectful computations and ignores their result
values (which in this case are void). We have preliminary implementations of
each of these operations but these appear more complex than necessary, and we
are in the process of trying to define these in a more elegant, structured manner.

Folding an execution algebra produces the general execution function:

exec :: (Monad m, Exec f m) => Fix f -> StackTrans m ()

exec = fold execAlg

7 Summary and Conclusion

In this article we reported on our work to date on the problem of implementing
compilers in a modular manner with respect to different computational effects
that may be supported by the source language. In particular, we showed how
modular syntax and semantics for a simple source language can be achieved
by combining the à la carte approach to extensible datatypes with the monad
transformers approach to modular interpreters, and outlined how a modular
compiler and virtual machine can be achieved using the same technology.

However, this is by no means the end of the story, and much remains to be
done. We briefly outline a number of directions for further work below.

Challenges: supporting a more modular code type in the virtual machine, as
our current version uses a fixed Code type rather than a generic fixpoint type to
simplify the implementation; and improving the implementation of the virtual
machine operations, by developing a modular approach to case analysis.

Extensions: considering other effects, such as mutable state, continuations
and languages with binding constructs, for example using a recent generalisation
of the à la carte technique for syntax with binders [2]; formalising the idea that
some effects may be ‘compiled away’ and hence are not required in the virtual
machine, such as the Maybe monad for our simple language; exploring the extent
to which defining compilers in a modular manner admits modular, and hopefully
simpler, proofs regarding their correctness; and considering other aspects of the
compilation process such as parsing and type-checking.

Other approaches: investigating how the more principled approach to lifting
monadic operations developed by Jaskelioff [7] and the modular approach to
operational semantics of Mosses [13] can be exploited in the context of modular

16 Towards Modular Compilers for Effects - Day and Hutton

compilers; the relationship to Harrison’s work [3]; considering the compilation
to register machines, rather than stack machines; and exploring how dependent
types may be utilised in our development (a preliminary implementation of this
paper in Coq has recently been produced by Acerbi [1]).

Acknowledgements

We would like to thank Mauro Jaskelioff, Neil Sculthorpe, the participants of
BCTCS 2011 in Birmingham and our anonymous referees for useful comments
and suggestions; and Matteo Acerbi for implementing our work in Coq.

References

1. M. Acerbi. Personal Communication, May 2011.
2. P. Bahr and T. Hvitved. Parametric Compositional Data Types. University of

Copenhagen, June 2011.
3. W. L. Harrison. Modular Compilers and Their Correctness Proofs. PhD thesis,

University of Illinois at Urbana-Champaign, 2001.
4. H. Huttel. Transitions and Trees: An Introduction to Structured Operational Se-

mantics. Cambridge University Press, April 2010.
5. G. Hutton. Programming in Haskell. Cambridge University Press, Jan. 2007.
6. G. Hutton and J. Wright. Compiling Exceptions Correctly. In Proceedings of

the 7th International Conference on Mathematics of Program Construction, pages
211–227. Springer, 2004.

7. M. Jaskelioff. Monatron: An Extensible Monad Transformer Library. In Imple-
mentation and Application of Functional Languages, 2008.

8. M. Jaskelioff. Lifting of Operations in Modular Monadic Semantics. PhD thesis,
University of Nottingham, 2009.

9. S. Liang, P. Hudak, and M. Jones. Monad Transformers and Modular Interpreters.
In Proceedings of the 22nd ACM Symposium on Principles of Programming Lan-
guages. ACM Press, 1995.

10. E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. pages 124–144. Springer-Verlag, 1991.

11. E. Meijer and G. Hutton. Bananas In Space: Extending Fold and Unfold To Ex-
ponential Types. In Proceedings of the 7th SIGPLAN-SIGARCH-WG2.8 Interna-
tional Conference on Functional Programming and Computer Architecture. ACM
Press, La Jolla, California, June 1995.

12. E. Moggi. Notions of Computation and Monads. Information and Computation,
93:55–92, 1989.

13. P. D. Mosses. Modular structural operational semantics, 2004.
14. D. A. Schmidt. Denotational Semantics: A Methodology For Language Develop-

ment. William C. Brown Publishers, Dubuque, IA, USA, 1986.
15. W. Swierstra. Data Types à la Carte. Journal of Functional Programming, 18:423–

436, July 2008.
16. P. Wadler. Comprehending Monads. In Proc. ACM Conference on Lisp and Func-

tional Programming, 1990.
17. P. Wadler. Monads for Functional Programming. In Proceedings of the Marktober-

dorf Summer School on Program Design Calculi. Springer–Verlag, 1992.
18. P. Wadler. The Expression Problem. Available online at: http://homepages.inf.

ed.ac.uk/wadler/papers/expression/expression.txt, 1998.

