Feature Engineering
and Selection

CS 294: Practical Machine Learning
October 1st, 2009

Alexandre Bouchard-Cote

Abstract supervised setup

° Training : {(wl,y1),($2,3/2)7-- 7(wnayn)}
* x; . Input vector

L 1
L 2

Ti g € R

Lin

’ —

* y . response variable
— y € {—1,1}: binary classification
-y R . regression

— what we want to be able to predict, having
observed some new .

Concrete setup
Input Output

“Danger”

HOTo:NOT

Over 12 Billion votes counted &
25,987,000 photos submitted.

Official Rating

8.9

Based on 4984 votes

Featurization

Features

L1
L2

Output

> “Danger”

HOTorNOT

Over 12 Billion votes counted &

25,987,000 photos submitted.
Official Rating

Based on 4984 votes

Outline

» Today: how to featurize effectively
— Many possible featurizations
— Choice can drastically affect performance

* Program:

— Part | : Handcrafting features: examples, bag
of tricks (feature engineering)

— Part IlI: Automatic feature selection

Part |I: Handcrafting
Features

Machines still need us

Example 1: email classification

o000 Conventum PWD 2000 — Boite de réception =)
o <« = =) =)
Supprimer Indésirable Répondre Rép. atous Réexpédier Imprimer
De : Christian D M

Conventum PWD 2000

te : September 28, 2009 6:41:23 AM PDT

A : Alain Doyon, Alexandre Bouchard <abouch18@po-box.megill.ca>,
Alexandre Bouchard-Cété , et 71 de plus

Bonjour a tous !

J'ai regu ce courriel qui pourra sans doute vous intéresser.

e PERSONAL

Objet : Conventum 2000-2010 PWD

Salut tout le monde, nous sommes en train de monter une banque de
courriels des finissants 2000 du PWD afin d'organiser le conventum.
On vous demande d'envoyer un courriel avec votre nom et votre
courriel a l'adresse suivante: pwdfinissants2000@hotmail.com

Faites circuler ce courriel a tous ceux qui ont terminé en 2000 afin

\/
qu'on puisse rejoindre le plus de monde pour le conventum... merci a

tous .
1) val v

* Input: a email message

* Output: is the email...
— spam,
— work-related,
— personal, ...

Basics: bag of words
* Input: * (email-valued) Indicator or
* Feature vector:

- fi(x) |
fa(x)

@)

,eg. fi():{

Kronecker
delta function

1 if the email contains “Viagra”
0 otherwise

» Learn one weight vector for each class:
w, € R", y € {SPAM,WORK,PERS}

» Decision rule: § = argmax, (wy, f(x))

Implementation: exploit sparsity

@ Feature weetor hashtable

extractFeature(Email e) { Feature template 1:
UNIGRAM:Viagra

result <- hashtable

for (String word : e.getWordsInBody())
result.put("UNIGRAM:" + word, 1.0)

String previous = "#"

for (String word : e.getWordsInBody()) {
result.put("BIGRAM:"+ previous + " " + word, 1.0)
previous = word

} ~—

return result
2 Feature template 2:
BIGRAM:Cheap Viagra

Features for multitask learning

* Each user inbox is a separate learning
problem
— E.qg.: Pfizer drug designer’s inbox

* Most inbox has very few training

Instances, but all the learning problems
are clearly related

Features for multitask learning
[e.g..Daume 00]

« Solution: include both user-specific and
global versions of each feature. E.g.:

— UNIGRAM:Viagra
— USER id4928-UNIGRAM:Viagra

* Equivalent to a Bayesian hierarchy under
some conditions (Finkel et al. 2009)

A
@\% @\%

Structure on the output space

* In multiclass classification, output space
often has known structure as well

« Example: a hierarchy:

Emails

Advance
fee frauds

Backscatter Work Personal

v \/
Spamvertised Mailing lists
sites

Structure on the output space

 Slight generalization of the learning/
prediction setup: allow features to depend
both on the input x and on the class y

Before: < One weight/class: w, € R",

- Decision rule: § = argmax, (wy, f(x))

After: « Single weight: w € R™,

* New rule:y = argmaXyW, f(z,y))

Structure on the output space

* At least as expressive: conjoin each
feature with all output classes to get the
same model

* E.9.: UNIGRAM:Viagra becomes

— UN
— UN
— UN
— UN
— UN

RAM:Viagra AN
RAM:Viagra AN
RAM:Viagra AN
RAM:Viagra AN
GRAM:Viagra AN

D C
D C
D C
D C

D C

_LASS=FRAUD
_LASS=ADVERTISE
LASS=WORK
LASS=LIST

LASS=PERSONAL

Structure on the output space

Exploit the information in the hierarchy by
activating both coarse and fine versions of
the features on a given input:

Emails

I

Spam Ham
Advance Backscatter Work Personal
fee frauds

Spamvertised Mailing lists
sites

/

UNIGRAM:Alex AND CLASS=PERSONAL
UNIGRAM:Alex AND CLASS=HAM

Structure on the output space

* Not limited to hierarchies
— multiple hierarchies
— in general, arbitrary featurization of the output

 Another use:

— want to model that if no words in the email
were seen in training, it's probably spam

— add a bias feature that is activated only in
SPAM subclass (ignores the input):
CLASS=SPAM

Dealing with continuous data

“WMWW

“Danger”

* Full solution needs HMMs (a sequence of
correlated classification problems): Alex
Simma will talk about that on Oct. 15

« Simpler problem: identify a single sound

unit (phoneme)

i

Dealing with continuous data

» Step 1: Find a coordinate system where
similar input have similar coordinates

—Use Fourier transforms and knowledge
about the human ear

Sound 1

Frequency domain:

Dealing with continuous data

» Step 2 (optional): Transform the
continuous data into discrete data

_Bad idea: COORDINATE=(9.54,8.34)

— Better: Vector quantization (VQ)
— Run k-mean on the training data as a

preprocessing step

— Feature is the index of the nearest
centroid

CLUSTER=1

CLUSTER=2

Dealing with continuous data

Important special case: integration of the
output of a black box

—Back to the email classifier. assume we
have an executable that returns, given a
email e, its belief B(e) that the email is

spam
—We want to model monotonicity
— Solution: thermometer feature

)

B(e)>04AND B(e)>06AND B(e)> 0.8 AND
CLASS=SPAM CLASS=SPAM CLASS=SPAM

Dealing with continuous data

Another way of integrating a qualibrated
black box as a feature:

" logB(e) if y = SPAM

Qtherwise
Recall: votes

are combined
additively

fz(mvy) = <

Part Il: (Automatic)
Feature Selection

What is feature selection?

» Reducing the feature space by throwing
out some of the features

* Motivating idea: try to find a simple,
“parsimonious” model

— Occam’s razor: simplest explanation that
accounts for the data is best

What is feature selection?

Task: classify emails as spam, work, ... Task: predict chances of lung disease

Data: presence/absence of words Data: medical history survey

X X

UNIGRAM:Viagra
UNIGRAM:the

Vegetarian No

Plays video
Reduced X games
Family history
UNIGRAM:Viagra Athletic No

BIGRAM:the presence

Reduced X

BIGRAM:hello Alex

UNIGRAM:Alex

BIGRAM:hello Alex | 1 Smoker

UNIGRAM:oOf

BIGRAM:free Viagra Gender

BIGRAM:absence of

Lung capacity

BIGRAM:classify email

Hair color
Car

BIGRAM:free Viagra

= | O O O A | A~ O -] O

BIGRAM:predict the

Weight

BIGRAM:emails as

Outline

Review/introduction
— What is feature selection? Why do it?

Filtering
Model selection

— Model evaluation
— Model search

Regularization
Summary recommendations

Why do it?

« Case 1: We're interested in features—we want
to know which are relevant. If we fit a model, it
should be interpretable.

« Case 2: We're interested in prediction; features
are not interesting in themselves, we just want to
build a good classifier (or other kind of
predictor).

Why do it? Case 1.

We want to know which features are relevant; we don’t
necessarily want to do prediction.

« What causes lung cancer?
— Features are aspects of a patient’s medical history
— Binary response variable: did the patient develop lung cancer?

— Which features best predict whether lung cancer will develop?
Might want to legislate against these features.

« What causes a program to crash? [Alice Zheng '03, ’04, ‘05]

— Features are aspects of a single program execution
* Which branches were taken?
» What values did functions return?

— Binary response variable: did the program crash?

— Features that predict crashes well are probably bugs

Why do it? Case 2.

We want to build a good predictor.

Common practice: coming up with as many features as
possible (e.g. > 10° not unusual)

— Training might be too expensive with all features
— The presence of irrelevant features hurts generalization.

Classification of leukemia tumors from microarray gene
expression data [Xing, Jordan, Karp '01]

— 72 patients (data points)

— 7130 features (expression levels of different genes)
Embedded systems with limited resources

— Classifier must be compact

— Voice recognition on a cell phone

— Branch prediction in a CPU
Web-scale systems with zillions of features

— user-specific n-grams from gmail/yahoo spam filters

Get at Case 1 through Case 2

» Even if we just want to identify features, it
can be useful to pretend we want to do
prediction.

» Relevant features are (typically) exactly
those that most aid prediction.

« But not always. Highly correlated features
may be redundant but both interesting as
“‘causes’.

— e.g. smoking in the morning, smoking at night

Feature selection vs.
Dimensionality reduction

« Removing features:

— Equivalent to projecting data onto lower-dimensional linear subspace
perpendicular to the feature removed

« Percy’s lecture: dimensionality reduction
— allow other kinds of projection.
« The machinery involved is very different
— Feature selection can can be faster at test time

— Also, we will assume we have labeled data. Some dimensionality
reduction algorithm (e.g. PCA) do not exploit this information

Outline

Review/introduction
— What is feature selection? Why do it?

Filtering
Model selection

— Model evaluation
— Model search

Regularization
Summary

Filtering

Simple techniques for weeding out
irrelevant features without fitting model

Filtering

« Basic idea: assign heuristic score to each
feature £ to filter out the “obviously” useless
ones.

— Does the individual feature seems to help prediction?

— Do we have enough data to use it reliably?

— Many popular scores [see Yang and Pederson '97]

 Classification with categorical data: Chi-squared, information
gain, document frequency

» Regression: correlation, mutual information
» They all depend on one feature at the time (and the data)

« Then somehow pick how many of the highest
scoring features to keep

Comparison of filtering methods for text

categorization [Yang and Pederson '97]

11-pt average precision

Figure 1. Average precision of KNN vs. unique word count

ST I ! ! T T T T
09 |
085 e
-a_
08 | '\.\\\ —
\-\-_\. ‘.m
0.75 _\Av _
0.7 _\\ _
T
0.65 | . _
®
al i IG —o— -
DF -+-
TS -B--
T CHIL.max - _
Ml.max -& -
05 F _
045 ¢ I : : I I I I
16000 14000 12000 10000 3000 6000 4000 2000

Number of features (unique words)

Filtering

Advantages:

— Very fast

— Simple to apply
Disadvantages:

— Doesn’t take into account interactions between features:
Apparently useless features can be useful when
grouped with others

Suggestion: use light filtering as an efficient initial
step if running time of your fancy learning
algorithm is an issue

Outline

Review/introduction
— What is feature selection? Why do it?

Filtering
Model selection

— Model evaluation
— Model search

Regularization
Summary

Model Selection

* Choosing between possible models of
varying complexity

— In our case, a “model” means a set of features
* Running example: linear regression model

Linear Regression Model

Input g € R? Parameters: w € R2+1!

Response : 1) & R Prediction : Y — ’UJTQE

* Recall that we can fit (learn) the model by minimizing
the squared error:

2

= argmin,,, E —w'x;)

Least Squares Fitting

(Fabian’s slide from 3 weeks ago)

Error or “residual”

Observation Yy

Prediction fj

|
|
|
|
|
|
|
|
|
|
|
|]
0 a'; 20

Sum squared error: L(w) = 37, (y; — w a;)?

Naive training error is misleading

lnput gz € R4 Parameters: @ ¢ R%+!

Response : Y - R Prediction y — me

Consider a reduced model with only those features =
for fesC{l,2,..., }(n .

d
— Squared erroris now Lg(w,) = Z(y@ — w, wz’,s)Q

1=1

Is this new model better? Maybe we should compare
the training errors to find out?

Note min,, L,(w,) > min,, L(w)

— Just zero out terms inw to match w; .

Generally speaking, training error will only go up in a
simpler model. So why should we use one’?

Overfitting example 1

301
25

20r

Degree 15 polynomial

15

10

» This model is too rich for the data
 Fits training data well, but doesn’t generalize.

(From Fabian’s lecture)

Overfitting example 2

Generate 2000 T; € RlOOO, x;, ~N(0,I) jid.

Generate 2000 Yi € Ry, ~N(0,1) iid. completely
independent of the x ;s
— We shouldn’t be able to predict y at all from x

Find w = argmin,, L(w)
Use this to predict y; for each x; by 9 = w '

3..

It really looks like we've
found a relationship
between and vy ! But
no such relationship
exists, sow will do no
better than random on
new data.

predicted Y

Model evaluation

Moral 1: In the presence of many irrelevant
features, we might just fit noise.

Moral 2: Training error can lead us astray.

To evaluate a feature set s, we need a better
scoring function K (s)

We're not ultimately interested in tfraining error;

we're interested in test error (error on new data).
We can estimate test error by pretending we

haven't seen some of our data.

— Keep some data aside as a validation set. If we don't
use it in training, then it's a better test of our model.

K-fold cross validation

A technique for estimating test error
Uses all of the data to validate

Divide data into K groups { X1, Xo,..., Xk }.
Use each group as a validation set, then average all validation

errors
-) (-

\ @ (@)X

G/
< e

K-fold cross validation

A technique for estimating test error
Uses all of the data to validate
Divide data into K groups { X1, Xy, XK}.

Use each group as a validation set, then average all validation
errors

\ /@

CORCY

K-fold cross validation

A technique for estimating test error
Uses all of the data to validate
Divide data into K groups { X1, Xy, XK}.

Use each group as a validation set, then average all validation
errors

CONY /@

O
& &

K-fold cross validation

A technique for estimating test error
Uses all of the data to validate
Divide data into K groups { X1, Xy, XK}.

Use each group as a validation set, then average all validation
errors

o

G/
< e

Model Search

We have an objective function K(s) = CV(s)
— Time to search for a good model.

This is known as a “wrapper” method
— Learning algorithm is a black box

— Just use it to compute objective function, then
do search

Exhaustive search expensive
— for n features, 2" possible subsets s

Greedy search is common and effective

Model search

Forward selection Backward elimination

Initialize s={} Initialize s={1,2,..,n}
Do: Do:
Add feature to s remove feature from s

which improves K(s) most which improves K(s) most
While K(s) can be improved While K(s) can be improved

« Backward elimination tends to find better models
— Better at finding models with interacting features

— But it is frequently too expensive to fit the large
models at the beginning of search

« Both can be too greedy.

Model search

More sophisticated search strategies exist
— Best-first search
— Stochastic search

— See “Wrappers for Feature Subset Selection”, Kohavi and John
1997

For many models, search moves can be evaluated
quickly without refitting

— E.g. linear regression model: add feature that has most
covariance with current residuals

YALE can do feature selection with cross-validation and
either forward selection or backwards elimination.

Other objective functions exist which add a model-
complexity penalty to the training error

— AIC: add penalty d to log-likelihood (number of features).
— BIC: add penalty dlogn (nis the number of data points)

Outline

Review/introduction
— What is feature selection? Why do it?

Filtering
Model selection

— Model evaluation
— Model search

Regularization
Summary

Regularization

* In certain cases, we can move model
selection info the induction algorithm

 This Is sometimes called an embedded
feature selection algorithm

Regularization

Regularization: add model complexity penalty to
training error. n

J(w) = L(w) + Cllwll, = Y (y; —w'z;)* + Cllwl,
=1
for some constant C

Find @w = argmin,, J(w)

Regularization forces weights to be small, but
does it force weights to be exactly zero?

—w¢ — 0 is equivalent to removing feature f from the
model

Depends on the value of p ...

p metrics and norms

 p =2: Euclidean

1@l]2 = \Jw? + -+ w2

 p =1: Taxicab or Manhattan
|01 = |wi| 4+ - + |wy|

« Generalcase: 0 <p <

/

]

@], = {/Twr]? + - -+ wn P

Univariate case: intuition

Penalty
\ ///
\\ \‘I"\,\
N
\\
N\
N]
\\
\\\“‘ Feature
08 -0.4 \\/ 258 > Weight
value

Univariate case: intuition

Penalty

Feature

+. weight

value
L1 penalizes more than L2

when the weight is small

Univariate example: L,

« Case 1: there is a lot of data supporting
our hypothesis

Regularization term Data likelihood Objective function

By itself, minimized Minimized by
by w=1.1 w=0.95

Univariate example: L,

» Case 2: there is NOT a lot of data
supporting our hypothesis

i /
s 5 1

05
o‘/e{ 05

Regularization term Data likelihood

By itself, minimized
by w=1.1

Objective function
Minimized by
w=0.36

Univariate example: L,

Case 1, when there is a lot of data
supporting our hypothesis:

— Almost the same resulting w as L2

Case 2, when there is NOT a lot of data
supporting our hypothesis

Get w = exactly zero

i /
75 1

Regularization term Data likelihood Objective function

By itself, minimized Minimized by
by w=1.1 w=0.0

Level sets of L, vs L, (in 2D)

Jwlly = S0 o lwy| e = /30w

Weight of
feature #2

— s 1wl —5allwll2
Weight of

feature #1 \J
|wll; =1 wl, = 1

Multivariate case: w gets cornered

e To minimize J(w)= L(w) + ||Jw||,, we can solve g—i =0
by (e.g.) gradient descent.

oL

ow

— g lwll:

lwlly =1

* Minimization is a tug-of-war between the two terms

/

Multivariate case: w gets cornered

+ To minimize J(w) = L(w) + ||w||,, we can solve g_J —
by (e.g.) gradient descent. w

__ 9oL

/8w
/

N

* Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered

+ To minimize J(w) = L(w) + [w], we can solve g—i =0
by (e.g.) gradient descent.

__ 0oL
/ ow

* Minimization is a tug-of-war between the two terms

Multivariate case: w gets cornered

+ To minimize J(w) = L(w) + [w], we can solve g—i =0
by (e.g.) gradient descent.

* Minimization is a tug-of-war between the two terms

« w is forced into the corners—components are zeroed
— Solution is often sparse

L, does not zero components

L, does not zero components

« L, regularization does not promote sparsity

» Even without sparsity, regularization promotes
generalization—Iimits expressiveness of model

Lasso Regression [Tibshirani ‘94]

« Simply linear regression with an L, penalty
for sparsity.

—a,rgmmwz —w'x;)? + Cllwl||;

« Compare with rldge regression (introduced
by Fabian 3 weeks ago):

—argmmwz —w'x;)? + Cl|lw||3

Lasso Regression [Tibshirani ‘94]

« Simply linear regression with an L, penalty
for sparsity

= argmmwz C'||wl|4

 Two questlons:

— 1. How do we perform this minimization?
« Difficulty: not differentiable everywhere

— 2. How do we choose C?
* Determines how much sparsity will be obtained
« C is called an hyperparameter

Question 1: Optimization/learning

« Set of discontinuity has Lebesgue
measure zero, but optimizer WILL hit them

» Several approaches, including:

— Projected gradient, stochastic projected
subgradient, coordinate descent, interior

point, orthan-wise L-BFGS [Friedman 07,
Andrew et. al. 07, Koh et al. 07, Kim et al. 07,
Duchi 08]

— More on that on the John’s lecture on
optimization

http://code.google.com/p/berkeleyparser/

Question 2: Choosing C

« Up until a few years ago
this was not trivial

— Fitting model. optimization
problem, harder than
least-squares

— Cross validation to choose
C: must fit model for every
candidate C value

. Not with LARS! (Least ~ _ © 1§ 7 %z 1
Angle Regression, N
Hastie et al, 2004)

— Find trajectory of w for all
possible C values
simultaneously, as
efficiently as least-squares

— Can choose exactly how , , . .
many features are wanted 1000 2000 3000

=316 —
Figure taken from Hastie et al (2004)

Remarks

e Not to be confused: two othogonal uses
of L1 for regression:

- lasso for sparsity: what we just described

n d
w = argmin,, Z(yz —w 'x;)* + C’Z [w ¢
f=1

1=1

- L1 loss: for robustness (Fabian’s lecture).

T
w = argmin,, Z i — waI}z'| + Cllwl|,
i=1

Intuition

Penalty

28

L1 penalizes more than L2 L1 penalizes less than L2
when x is small (use this for when x is big (use this for
sparsity) robustness)

Remarks

e L1 penalty can be viewed as a laplace
prior on the weights, just as L2 penalty
can viewed as a normal prior

— Side note: also possible to learn C
efficiently when the penalty is L2 (Foo, Do,
Ng, ICML 09, NIPS 07)

e Not limited to regression: can be
applied to classification, for example

L1 Vs L2 [Gao et al '07]

* For large scale problems, performance of
L1 and L2 is very similar (at least in NLP)
— A slight advantage of L2 over L1 in accuracy

— But solution is 2 orders of magnitudes
sparser!

— Parsing reranking task:

F-Score # features lime (min) # train iter
_ Baseline | 0.8986

(Higher F1 09176 1,211,026 62 129
is better) 0.9165 19,121 37 174
0.9164 939,248 2 8
Boosting| (1.9131 6,714 495 92,600
BLasso 0.9133 8,085 239 56,500

When can feature selection
hurt?

 NLP example: back to the emall
classification task

« Zipf law: frequency of a word is inversely
proportional to its frequency rank.

— Fat tail: many n-grams are seen only once in
the training

— Yet they can be very useful predictors

— E.g. 8-gram “today | give a lecture on feature

selection” occurs only once in my mailbox, but
it's a good predictor that the email is WORK

Outline

Review/introduction
— What is feature selection? Why do it?

Filtering
Model selection

— Model evaluation
— Model search

Regularization
Summary

Summary: feature engineering

* Feature engineering is often crucial to get
good results

« Strategy: overshoot and regularize

— Come up with lots of features: better to include
irrelevant features than to miss important
features

— Use regularization or feature selection to
prevent overfitting

— Evaluate your feature engineering on DEV set.
Then, when the feature set is frozen, evaluate
on TEST to get a final evaluation (Daniel will
say more on evaluation next week)

Summary: feature selection

When should you do it?

— If the only concern is accuracy, and the whole
dataset can be processed, feature selection not
needed (as long as there is regularization)

— If computational complexity is critical
(embedded device, web-scale data, fancy

learning algorithm), consider using feature
selection

» But there are alternatives: e.g. the Hash trick, a
fast, non-linear dimensionality reduction technique
[Weinberger et al. 2009]

— When you care about the feature themselves
« Keep in mind the correlation/causation issues
« See [Guyon et al., Causal feature selection, 07]

Summary: how to do feature selection

- *Filtering
L, regularization

(embedded
methods)

Wrappers

Forward
selection

Backward
selection

*Other search
Exhaustive

Summary: how to do feature selection

*Liltering « Good preprocessing
L, regularization step
(embedded _
methods) * Fails to capture
“Wrappers relationship between
-Forward features
selection
*Backward
selection

*Other search
Exhaustive

Summary: how to do feature selection

*Filtering « Fairly efficient
L, reqularization — LARS-type algorithms now

exist for many linear
(embedded models.

methods)
Wrappers

Forward
selection

Backward
selection

*Other search
Exhaustive

Summary: how to do feature selection

*Filtering * Most directly optimize
L, regularization prediction performance
(embedded Can be very expensive,
methods) even with greedy search
*Forward T
selection « Cross-validation is a
“Backward good objective function to
selection start with

*Other search
Exhaustive

Summary: how to do feature selection

*Filtering * Too greedy—ignore
L, regularization relationships between
(embedded features

methods)

« Easy baseline

*Wrappers _ _
,,_Popward Can be generalized in
selection many interesting ways
«Backward — Stagewise forward
selection selection
«Other search — Forward-backward search

-Exhaustive — Boosting

Summary: how to do feature selection

*Filtering « Generally more effective
.L, regularization than greedy

(embedded
methods)

Wrappers

Forward
selection

Backward
selection

*Qther search
Exhaustive

Summary: how to do feature selection

*Filtering The “ideal”

'Ly regularization .« \/ery seldom done in
(embedded practice

methods)

 With cross-validation

*Wrappers S ,

PP objective, there's a
*Forward s
selection chance of over-fitting
-Backward — Some subset might
selection randomly perform quite

well in cross-validation
*Other search

Exhaustive

Extra slides

Feature engineering case study:
Modeling language change gouchard etal. 07.09

fish’ |fear’

Hawaiian |ira ~ makatu
Samoan 1?3 matar’u
|Tongan |ika
Maorl 1ka mataku

Feature engineering case study:
Modeling language change gouchard etal. 07.09

fish” |fear
Hawaiian |ira ~ makatu

Samoan 17a matar’u
Tongan |ika
cfl S h y M ao rl lka mataku

*1ka

Proto-Oceanic

Tasks: e Proto-word
reconstruction
e Infer sound changes

Feature engineering case study:
Modeling language change gouchard etal. 07.09

* Featurize sound changes
— E.g.: substitution are generally more frequent than
insertions, deletions, changes are branch specific, but
there are cross-linguistic universal, etc.

» Particularity: unsupervised learning setup

— We covered feature engineering for supervised setups
for pedagogical reasons; most of what we have seen
applies to the unsupervised setup

m - m n n n A N

pb td td c3} kg qgg 2 ?
p\/\/g

B fv 093 §£:i§ sz ¢4 xy s hG HS hh

L J 1]y

Feature selection case study:
Protein Energy Prediction umetai o7

 What is a protein?
— A protein is a chain of amino acids.

* Proteins fold into a 3D conformation by minimizing energy

— “Native” conformation (the one found in nature) is the lowest
energy state

— We would like to find it using only computer search.
— Very hard, need to try several initialization in parallel

Regression problem:
— Input: many different conformation of the same sequence
— Output: energy

Features derived from:
¢ and v torsion angles.

Restrict next wave of

search to agree with
features that predicted
high energy

Featurization

« Torsion angle features can be binned

q)l W1 q)z lpZ ¢3 W4 lpS (I)6 w6
0 75.3 |-61.6|-24.8|-68.6 |-51.9 -42.3

\> \/ // _ (160, 180)

G

E

(-180, -180)

* Bins in the Ramachandran plot correspond to
common structural elements

— Secondary structure: alpha helices and beta sheets

Results of LARS for predicting
protein energy

* One column for each torsion angle feature

« Colors indicate frequencies in data set
— Red is high, blue is low, 0 is very low, white is never
— Framed boxes are the correct native features

€k N

— “-" indicates negative LARS weight (stabilizing), “+”
indicates positive LARS weight (destabilizing)
L] | - ,

0 REEETE B
: 0

oQmo

Other things to check out

« Bayesian methods

— David MacKay: Automatic Relevance Determination
« originally for neural networks

— Mike Tipping: Relevance Vector Machines
» http://research.microsoft.com/mip/rvm/

« Miscellaneous feature selection algorithms

— Winnow

 Linear classification, provably converges in the presence of
exponentially many irrelevant features

— Optimal Brain Damage
» Simplifying neural network structure
« Case studies
— See papers linked on course webpage.

http://research.microsoft.com/mlp/rvm/
http://research.microsoft.com/mlp/rvm/

Acknowledgments

« Useful comments by Mike Jordan, Percy Liang
« Afirst version of these slides was created by Ben Blum

